1,506 research outputs found

    Variational bounds on the energy dissipation rate in body-forced shear flow

    Full text link
    A new variational problem for upper bounds on the rate of energy dissipation in body-forced shear flows is formulated by including a balance parameter in the derivation from the Navier-Stokes equations. The resulting min-max problem is investigated computationally, producing new estimates that quantitatively improve previously obtained rigorous bounds. The results are compared with data from direct numerical simulations.Comment: 15 pages, 7 figure

    Coherent State path-integral simulation of many particle systems

    Full text link
    The coherent state path integral formulation of certain many particle systems allows for their non perturbative study by the techniques of lattice field theory. In this paper we exploit this strategy by simulating the explicit example of the diffusion controlled reaction A+A→0A+A\to 0. Our results are consistent with some renormalization group-based predictions thus clarifying the continuum limit of the action of the problem.Comment: 20 pages, 4 figures. Minor corrections. Acknowledgement and reference correcte

    Variational bound on energy dissipation in turbulent shear flow

    Full text link
    We present numerical solutions to the extended Doering-Constantin variational principle for upper bounds on the energy dissipation rate in plane Couette flow, bridging the entire range from low to asymptotically high Reynolds numbers. Our variational bound exhibits structure, namely a pronounced minimum at intermediate Reynolds numbers, and recovers the Busse bound in the asymptotic regime. The most notable feature is a bifurcation of the minimizing wavenumbers, giving rise to simple scaling of the optimized variational parameters, and of the upper bound, with the Reynolds number.Comment: 4 pages, RevTeX, 5 postscript figures are available as one .tar.gz file from [email protected]

    Variational bound on energy dissipation in plane Couette flow

    Full text link
    We present numerical solutions to the extended Doering-Constantin variational principle for upper bounds on the energy dissipation rate in turbulent plane Couette flow. Using the compound matrix technique in order to reformulate this principle's spectral constraint, we derive a system of equations that is amenable to numerical treatment in the entire range from low to asymptotically high Reynolds numbers. Our variational bound exhibits a minimum at intermediate Reynolds numbers, and reproduces the Busse bound in the asymptotic regime. As a consequence of a bifurcation of the minimizing wavenumbers, there exist two length scales that determine the optimal upper bound: the effective width of the variational profile's boundary segments, and the extension of their flat interior part.Comment: 22 pages, RevTeX, 11 postscript figures are available as one uuencoded .tar.gz file from [email protected]

    On the universality of a class of annihilation-coagulation models

    Full text link
    A class of dd-dimensional reaction-diffusion models interpolating continuously between the diffusion-coagulation and the diffusion-annihilation models is introduced. Exact relations among the observables of different models are established. For the one-dimensional case, it is shown how correlations in the initial state can lead to non-universal amplitudes for time-dependent particles density.Comment: 18 pages with no figures. Latex file using REVTE

    Subdiffusion-limited reactions

    Full text link
    We consider the coagulation dynamics A+A -> A and A+A A and the annihilation dynamics A+A -> 0 for particles moving subdiffusively in one dimension. This scenario combines the "anomalous kinetics" and "anomalous diffusion" problems, each of which leads to interesting dynamics separately and to even more interesting dynamics in combination. Our analysis is based on the fractional diffusion equation

    Coulomb Drag between One-Dimensional Wigner Crystal Rings

    Full text link
    We consider the Coulomb drag between two metal rings in which the long range Coulomb interaction leads to the formation of a Wigner crystal. The first ring is threaded by an Ahranov Bohm flux creating a persistent current J_0. The second ring is brought in close proximity to the second and due to the Coulomb interaction between the two rings a drag current J_D is produced in the second. We investigate this system at zero temperature for perfect rings as well as the effects of impurities. We show that the Wigner crystal state can in principle lead to a higher ratio of drag current to drive current J_D/J_0 than in weakly interacting electron systems.Comment: 12 pages, 10 figure

    Fluctuations and stability in front propagation

    Full text link
    Propagating fronts arising from bistable reaction-diffusion equations are a purely deterministic effect. Stochastic reaction-diffusion processes also show front propagation which coincides with the deterministic effect in the limit of small fluctuations (usually, large populations). However, for larger fluctuations propagation can be affected. We give an example, based on the classic spruce-budworm model, where the direction of wave propagation, i.e., the relative stability of two phases, can be reversed by fluctuations.Comment: 5 pages, 5 figure
    • …
    corecore