48,988 research outputs found

    The 2-D magnetohydrostatic configurations leading to flares or quiescent filament eruptions

    Get PDF
    To investigate the cause of flares and quiescent filament eruptions the quasi-static evolution of a magnetohydrostatic (MHS) model was studied. The results lead to a proposal that: the sudden disruption of an active-region filament field configuration and the accompanying flare result from the lack of a neighboring equilibrium state as magnetic shear is increased above the critical value; and a quiescent filament eruption is due to an ideal MHD kink instability of a highly twisted detached flux tube formed by the increase of plasma current flowing along the length of the filament. A numerical solution was developed for the 2-D MHS equation for the self-consistent equilibrium of a filament and overlying coronal magnetic field. Increase of the poloidal current causes increase of magnetic shear. As shear increases past a critical point, there is a discontinuous topological change in the equilibrium configuration. It was proposed that the lack of a neighboring equilibrium triggers a flare. Increase of the axial current results in a detached tube with enough helical twist to be unstable to ideal MHD kink modes. It was proposed that this is the condition for the eruption of a quiescent filament

    Shock wave loading and spallation of copper bicrystals with asymmetric Σ3〈110〉tilt grain boundaries

    Get PDF
    We investigate the effect of asymmetric grain boundaries (GBs) on the shock response of Cu bicrystals with molecular dynamics simulations. We choose a representative Σ3〈110〉tilt GB type, (110)_1/(114)_2, and a grain size of about 15 nm. The shock loading directions lie on the GB plane and are along [001] and [221] for the two constituent crystals. The bicrystal is characterized in terms of local structure, shear strain, displacement, stress and temperature during shock compression, and subsequent release and tension. The shock response of the bicrystal manifests pronounced deviation from planar loading as well as strong stress and strain concentrations, due to GBs and the strong anisotropy in elasticity and plasticity. We explore incipient to full spallation. Voids nucleate either at GBs or on GB-initiated shear planes, and the spall damage also depends on grain orientation

    Observation of sub-Poisson photon statistics in the cavity-QED microlaser

    Full text link
    We have measured the second-order correlation function of the cavity-QED microlaser output and observed a transition from photon bunching to antibunching with increasing average number of intracavity atoms. The observed correlation times and the transition from super- to sub-Poisson photon statistics can be well described by gain-loss feedback or enhanced/reduced restoring action against fluctuations in photon number in the context of a quantum microlaser theory and a photon rate equation picture. However, the theory predicts a degree of antibunching several times larger than that observed, which may indicate the inadequacy of its treatment of atomic velocity distributions.Comment: 4 pages, 4 figure

    Strong decays of N∗(1535)N^{*}(1535) in an extended chiral quark model

    Full text link
    The strong decays of the N∗(1535)N^{*}(1535) resonance are investigated in an extended chiral quark model by including the low-lying qqqqqˉqqqq\bar{q} components in addition to the qqqqqq component. The results show that these five-quark components in N∗(1535)N^{*}(1535) contribute significantly to the N∗(1535)→NπN^{*}(1535)\to N\pi and N∗(1535)→NηN^{*}(1535)\to N\eta decays. The contributions to the NηN\eta decay come from both the lowest energy and the next-to-lowest energy five-quarks components, while the contributions to the NπN\pi decay come from only the latter one. Taking these contributions into account, the description for the strong decays of N∗(1535)N^{*}(1535) is improved, especially, for the puzzling large ratio of the decays to NηN\eta and NπN\pi.Comment: 6 pages, 1 figur

    Binary pulsars as probes of a Galactic dark matter disk

    Full text link
    As a binary pulsar moves through a wind of dark matter particles, the resulting dynamical friction modifies the binary's orbit. We study this effect for the double disk dark matter (DDDM) scenario, where a fraction of the dark matter is dissipative and settles into a thin disk. For binaries within the dark disk, this effect is enhanced due to the higher dark matter density and lower velocity dispersion of the dark disk, and due to its co-rotation with the baryonic disk.We estimate the effect and compare it with observations for two different limits in the Knudsen number (KnKn). First, in the case where DDDM is effectively collisionless within the characteristic scale of the binary (Kn≫1Kn\gg1) and ignoring the possible interaction between the pair of dark matter wakes. Second, in the fully collisional case (Kn≪1Kn\ll1), where a fluid description can be adopted and the interaction of the pair of wakes is taken into account. We find that the change in the orbital period is of the same order of magnitude in both limits. A comparison with observations reveals good prospects to probe currently allowed DDDM models with timing data from binary pulsars in the near future. We finally comment on the possibility of extending the analysis to the intermediate (rarefied gas) case with Kn∼1Kn\sim1.Comment: 15 pages, 6 figures. Few comments and references added, version accepted for publication in Physics of the Dark Universe (PDU

    Anisotropic shock response of columnar nanocrystalline Cu

    Get PDF
    We perform molecular dynamics simulations to investigate the shock response of idealized hexagonal columnar nanocrystalline Cu, including plasticity, local shear, and spall damage during dynamic compression, release, and tension. Shock loading (one-dimensional strain) is applied along three principal directions of the columnar Cu sample, one longitudinal (along the column axis) and two transverse directions, exhibiting a strong anisotropy in the response to shock loading and release. Grain boundaries (GBs) serve as the nucleation sites for crystal plasticity and voids, due to the GB weakening effect as well as stress and shear concentrations. Stress gradients induce GB sliding which is pronounced for the transverse loading. The flow stress and GB sliding are the lowest but the spall strength is the highest, for longitudinal loading. For the grain size and loading conditions explored, void nucleation occurs at the peak shear deformation sites (GBs, and particularly triple junctions); spall damage is entirely intergranular for the transverse loading, while it may extend into grain interiors for the longitudinal loading. Crystal plasticity assists the void growth at the early stage but the growth is mainly achieved via GB separation at later stages for the transverse loading. Our simulations reveal such deformation mechanisms as GB sliding, stress, and shear concentration, GB-initiated crystal plasticity, and GB separation in nanocrystalline solids under shock wave loading

    Temperature Dependence Of Brillouin Light Scattering Spectra Of Acoustic Phonons In Silicon

    Get PDF
    Electrons, optical phonons, and acoustic phonons are often driven out of local equilibrium in electronic devices or during laser-material interaction processes. The need for a better understanding of such non-equilibrium transport processes has motivated the development of Raman spectroscopy as a local temperature sensor of optical phonons and intermediate frequency acoustic phonons, whereas Brillouin light scattering (BLS) has recently been explored as a temperature sensor of low-frequency acoustic phonons. Here, we report the measured BLS spectra of silicon at different temperatures. The origins of the observed temperature dependence of the BLS peak position, linewidth, and intensity are examined in order to evaluate their potential use as temperature sensors for acoustic phonons. (C) 2015 AIP Publishing LLC.National Science Foundation (NSF) Thermal Transport Processes Program CBET-1336968PhysicsCenter for Complex Quantum SystemsMaterials Science and EngineeringTexas Materials InstituteMechanical Engineerin

    Who Contributes to the Knowledge Sharing Economy?

    Full text link
    Information sharing dynamics of social networks rely on a small set of influencers to effectively reach a large audience. Our recent results and observations demonstrate that the shape and identity of this elite, especially those contributing \emph{original} content, is difficult to predict. Information acquisition is often cited as an example of a public good. However, this emerging and powerful theory has yet to provably offer qualitative insights on how specialization of users into active and passive participants occurs. This paper bridges, for the first time, the theory of public goods and the analysis of diffusion in social media. We introduce a non-linear model of \emph{perishable} public goods, leveraging new observations about sharing of media sources. The primary contribution of this work is to show that \emph{shelf time}, which characterizes the rate at which content get renewed, is a critical factor in audience participation. Our model proves a fundamental \emph{dichotomy} in information diffusion: While short-lived content has simple and predictable diffusion, long-lived content has complex specialization. This occurs even when all information seekers are \emph{ex ante} identical and could be a contributing factor to the difficulty of predicting social network participation and evolution.Comment: 15 pages in ACM Conference on Online Social Networks 201
    • …
    corecore