333 research outputs found
On extra forces from large extra dimensions
The motion of a classical test particle moving on a 4-dimensional brane
embedded in an -dimensional bulk is studied in which the brane is allowed to
fluctuate along the extra dimensions. It is shown that these fluctuations
produce three different forces acting on the particle, all stemming from the
effects of extra dimensions. Interpretations are then offered to describe the
origin of these forces and a relationship between the 4 and -dimensional
mass of the particle is obtained by introducing charges associated with large
extra dimensions.Comment: 9 pages, no figuer
Kinetic equations for ultrarelativistic particles in a Robertson-Walker Universe and isotropization of relict radiation by gravitational interactions
Kinetic equations for ultrarelativistic particles with due account of
gravitational interactions with massive particles in the Robertson-Walker
universe are obtained. On the basis of an exact solution of the kinetic
equations thus obtained, a conclusion is made as to the high degree of the
uniformity of the relict radiation on scales with are less than .Comment: 19 pages, 2 figures, 13 reference
Recommended from our members
A novel neurotrophic therapeutic strategy for experimental stroke.
Human chorionic gonadotropin (hCG) promotes proliferation of endogenous neural stem cells, and erythropoietin (EPO) promotes differentiation of these cells into neural stem cells. The current study examined effects of sequential administration of these two compounds, initiated 24 h after stroke. At that time, rats were randomized into four treatment groups: hCG+EPO (3 IM doses hCG over 5 days, followed by 3 IV doses EPO over 3 days), hCG+Saline using the same schedule, Saline+EPO using the same schedule, or neither drug (Saline+Saline). The primary endpoint was the composite neurological score, measured 11 times, from 1 h until 12 weeks post-insult. The neurological score was different across treatment groups (p<0.03). Pairwise testing of groups found that the hCG+EPO group had significantly better behavior at 6/10 post-stroke time points as compared to Saline+Saline. The differences observed when comparing the two-drug group with placebo were less apparent when comparing either of the one-drug groups with placebo. The two one-drug treatment arms did not significantly differ at any time point. Treatment with hCG+EPO significantly reduced total lesion volume by 82-89% compared to the other three treatment groups. The current therapeutic strategy improved behavioral outcome and reduced lesion volume with a time window of 24 h after the onset of stroke. The results from these experiments provide new insight into the effects of these two growth factors on stroke in rats, and could suggest a potential for translation into human stroke studies
Docosahexaenoic Acid Therapy of Experimental Ischemic Stroke
We examined the neuroprotective efficacy of docosahexaenoic acid (DHA), an omega-3 essential fatty acid family member, in acute ischemic stroke; studied the therapeutic window; and investigated whether DHA administration after an ischemic stroke is able to salvage the penumbra. In each series described below, SD rats underwent 2 h of middle cerebral artery occlusion (MCAo). In series 1, DHA or saline was administered i.v. at 3, 4, 5, or 6 h after stroke. In series 2, MRI was conducted on days 1, 3 and 7. In series 3, DHA or saline was administered at 3 h, and lipidomic analysis was conducted on day 3. Treatment with DHA significantly improved behavior and reduced total infarct volume by a mean of 40% when administered at 3 h, by 66% at 4 h, and by 59% at 5 h. Total lesion volumes computed from T2-weighted images were reduced in the DHA group at all time points. Lipidomic analysis showed that DHA treatment potentiates neuroprotectin D1 (NPD1) synthesis in the penumbra 3 days after MCAo. DHA administration provides neurobehavioral recovery, reduces brain infarction and edema, and activates NPD1 synthesis in the penumbra when administered up to 5 h after focal cerebral ischemia in rats
Superior Neuroprotective Efficacy of LAU-0901, a Novel Platelet-Activating Factor Antagonist, in Experimental Stroke
Platelet-activating factor (PAF) accumulates during cerebral ischemia, and inhibition of this process plays a critical role in neuronal survival. Recently, we demonstrated that LAU-0901, a novel PAF receptor antagonist, is neuroprotective in experimental stroke. We used magnetic resonance imaging in conjunction with behavior and immunohistopathology to expand our understanding of this novel therapeutic approach. Sprague–Dawley rats received 2 h middle cerebral artery occlusion (MCAo) and were treated with LAU-0901 (60 mg/kg) or vehicle 2 h from MCAo onset. Behavioral function, T2-weighted imaging (T2WI), and apparent diffusion coefficients were performed on days 1, 3, and 7 after MCAo. Infarct volume and number of GFAP, ED-1, and NeuN-positive cells were conducted on day 7. Behavioral deficit was significantly improved by LAU-0901 treatment compared to vehicle on days 1, 3, and 7. Total lesion volumes computed from T2WI were significantly reduced by LAU-0901 on days 1, 3, and 7 (by 83%, 90%, and 96%, respectively), which was consistent with decreased edema formation. Histopathology revealed that LAU-0901 treatment resulted in significant reduction of cortical and subcortical infarct volumes, attenuated microglial infiltration, and promoted astrocytic and neuronal survival. These findings suggest LAU-0901 is a promising neuroprotectant and provide the basis for future therapeutics in patients suffering ischemic stroke
Recommended from our members
A novel therapeutic strategy improves functional recovery after MCAo stroke in rats
Free Energy of an SU(2) Model of (2+1)-dimensional QCD in the Constant Condensate Background
Gluon and quark contributions to the thermodynamic potential (free energy) of
a (2+1)-dimensional QCD model at finite temperature in the background of a
constant homogeneous chromomagnetic field H combined with A_0 condensate are
calculated. The role of the tachyonic mode in the gluon energy spectrum is
discussed. A possibility of the free energy global minimum generation at
nonzero values of H and A_0 condensates is investigated.Comment: LaTeX 2e, 14 pages, 6 eps figures, some miscalculations were
correcte
Fire safety experiments on MIR Orbital Station
The process of heterogeneous combustion of most materials under zero-g without forced motion of air is practically impossible. However, ventilation is required to support astronauts' life and cool equipment. The presence of ventilation flows in station compartments at accidental ignition can cause a fire. An additional, but exceedingly important parameter of the fire risk of solid materials under zero-g is the minimum air gas velocity at which the extinction of materials occurs. Therefore, the conception of fire safety can be based on temporarily lowering the intensity of ventilation and even turning it off. The information on the limiting conditions of combustion under natural conditions is needed from both scientific and practical points of view. It will enable us to judge the reliability of results of ground-based investigations and develop a conception of fire safety of inhabited sealed compartments of space stations to by provided be means of nontraditional and highly-effective methods without both employing large quantities of fire-extinguishing compounds and hard restrictions on use of polymers. In this connection, an experimental installation was created to study the process of heterogeneous combustion of solid non-metals and to determine the conditions of its extinction under microgravity. This installation was delivered to the orbital station 'Mir' and the cosmonauts Viktorenko and Kondakova performed initial experiments on it in late 1994. The experimental installation consists of a combustion chamber with an electrical systems for ignition of samples, a device for cleaning air from combustion products, an air suction unit, air pipes and a control panel. The whole experiment is controlled by telemetry and recorded with two video cameras located at two different places. Besides the picture, parameters are recorded to determine the velocity of the air flow incoming to the samples, the time points of switching on/off the devices, etc. The combustion chamber temperature is also controlled. The main objectives of experiments of this series were as follows: (1) verification of the reliability of the installation in orbital flight; (2) verification of the experimental procedure; and (3) investigation of combustion of two types of materials under microgravity at various velocities of the incoming air flow
Role of Vector Mesons in High-Q^2 Lepton-Nucleon Scattering
The possible role played by vector mesons in inclusive deep inelastic
lepton-nucleon scattering is investigated. In the context of the convolution
model, we calculate self-consistently the scaling contribution to the nucleon
structure function using the formalism of time-ordered perturbation theory in
the infinite momentum frame. Our results indicate potentially significant
effects only when the vector meson---nucleon form factor is very hard.
Agreement with the experimental antiquark distributions, however, requires
relatively soft form factors for the , and vertices.Comment: 22 pages, 9 figures (available upon request); accepted for
publication in Phys.Rev.D, ADP-92-197/T12
The Pioneer anomaly in the context of the braneworld scenario
We examine the Pioneer anomaly - a reported anomalous acceleration affecting
the Pioneer 10/11, Galileo and Ulysses spacecrafts - in the context of a
braneworld scenario. We show that effects due to the radion field cannot
account for the anomaly, but that a scalar field with an appropriate potential
is able to explain the phenomena. Implications and features of our solution are
analyzed.Comment: Final version to appear at Classical & Quantum Gravity. Plainlatex 19
page
- …