32 research outputs found

    A comprehensive view on climate change: coupling of Earth system and integrated assessment models

    Get PDF
    There are several reasons to strengthen the cooperation between the integrated assessment (IA) and earth system (ES) modeling teams in order to better understand the joint development of environmental and human systems. This cooperation can take many different forms, ranging from information exchange between research communities to fully coupled modeling approaches. Here, we discuss the strengths and weaknesses of different approaches and try to establish some guidelines for their applicability, based mainly on the type of interaction between the model components (including the role of feedback), possibilities for simplification and the importance of uncertainty. We also discuss several important areas of joint IA–ES research, such as land use/land cover dynamics and the interaction between climate change and air pollution, and indicate the type of collaboration that seems to be most appropriate in each case. We find that full coupling of IA–ES models might not always be the most desirable form of cooperation, since in some cases the direct feedbacks between IA and ES may be too weak or subject to considerable process or scenario uncertainty. However, when local processes are important, it could be important to consider full integration. By encouraging cooperation between the IA and ES communities in the future more consistent insights can be developed

    Food loss and waste metrics: a proposed nutritional cost footprint linking linear programming and life cycle assessment

    Get PDF
    Purpose: The main purpose of this article is to assess the nutritional and economic efficiency of food loss and waste (FLW) along the supply of 13 food categories included in the Spanish food basket by means of the definition of a new method which combines two indexes. Methods: The nutrient-rich foods index and the economic food loss and waste (EFLW) index were combined by means of linear programming to obtain the nutritional cost footprint (NCF) indicator under a life cycle perspective. The functional unit used was the daily supply of food for a Spanish citizen in year 2015. Results and discussion: Results showed that vegetables and cereals were the food categories most affected by the inefficiencies in the food supply chain under a nutritional perspective, being agricultural production and household consumption the main stages in which the nutritional content of food is lost or wasted. Moreover, according to the NCF index, vegetables represented 27% of total nutritional-economic wastage throughout the entire Spanish agri-food chain. They are followed by fruits, which add up to 19%. Hence, specific food waste management strategies should be established for these specific products and supply stages. Finally, the sensitivity analysis performed highlighted that results were mostly independent from the importance attributed to either nutritional or economic variables. Conclusions: The methodology described in this study proposes an indicator quantifying the nutritional-economic cost of different food categories in the Spanish food basket. This NCF indicator makes it possible to define reduction strategies to promote the use of food waste fractions for waste-to-energy valorization approaches or the extraction of different types of pharmacological, chemical, or cosmetic compounds.The authors are grateful for the funding of the Spanish Ministry of Economy and Competitiveness through the Ceres-Procom: Food production and consumption strategies for climate change mitigation (CTM2016-76176-C2-1-R) (AEI/FEDER, UE)

    Changes in organic carbon stocks upon land use conversion in the Brazilian Cerrado: A review. Agriculture

    No full text
    This paper reviews current knowledge on changes in carbon stocks upon land use conversion in the Brazilian Cerrado. First, we briefly characterize the savanna ecosystem and summarize the main published data on C stocks under natural conditions. The effects of increased land use pressure in the Cerrado and current uncertainties of estimations of changes in land cover and land use are reviewed next. Thereafter, we focus on soil organic carbon (SOC) dynamics due to changes in land use, particularly conversion to pastures and soybean-based cropping systems, and effects of management practices such as soil fertilization, crop rotations and tillage practices. Most studies considered here suggest that more intensive agriculture, which include no-till practices and the implementation of best or recommended management practices (RMP), reduces SOC losses after land use conversion from conventional tillage-based, monocropping systems; however, these studies focussed on the first 0.3 m of soil, or less, and seldom considered full carbon accounting. To better estimate possible global warming mitigation with agriculture in the Cerrado more comprehensive studies are needed that analyse fluxes of the biogenic greenhouse gases (GHG; CO2, N2O and CH4) to determine the net global warming potential (GWP). Follow up studies should include the application of an integrated modelling system, comprised of a Geographic Information System (GIS) linked to dynamic modelling tools, to analyse SOC dynamics and make projections for possible changes in net C flows in the Cerrado region upon defined changes in soil use and managemen
    corecore