1,478 research outputs found

    Evolution of optical properties of chromium spinels CdCr2_2O4_4, HgCr2_2S4_4, and ZnCr2_2Se4_4 under high pressure

    Full text link
    We report pressure-dependent reflection and transmission measurements on ZnCr2_2Se4_4, HgCr2_2S4_4, and CdCr2_2O4_4 single crystals at room temperature over a broad spectral range 200-24000 cm1^{-1}. The pressure dependence of the phonon modes and the high-frequency electronic excitations indicates that all three compounds undergo a pressure-induced structural phase transition with the critical pressure 15 GPa, 12 GPa, and 10 GPa for CdCr2_2O4_4, HgCr2_2S4_4, and ZnCr2_2Se4_4, respectively. The eigenfrequencies of the electronic transitions are very close to the expected values for chromium crystal-field transitions. In the case of the chalcogenides pressure induces a red shift of the electronic excitation which indicates a strong hybridization of the Cr d-bands with the chalcogenide bands.Comment: Accepted for publication in Phys. Rev.

    Chiral spin currents and spectroscopically accessible single merons in quantum dots

    Full text link
    We provide unambiguous theoretical evidence for the formation of correlation-induced isolated merons in rotationally-symmetric quantum dots. Our calculations rely on neither the lowest-Landau-level approximation, nor on the maximum-density-droplet approximation, nor on the existence of a spin-polarized state. For experimentally accessible system parameters, unbound merons condense in the ground state at magnetic fields as low as B=0.2B^* = 0.2 T and for as few as N = 3 confined fermions. The four-fold degenerate ground-state at BB^* corresponds to four orthogonal merons QC\ket{QC} characterized by their topological chirality CC and charge QQ. This degeneracy is lifted by the Rashba and Dresselhaus spin-orbit interaction, which we include perturbatively, yielding spectroscopic accessibility to individual merons. We further derive a closed-form expression for the topological chirality in the form of a chiral spin current and use it to both characterize our states and predict the existence of other topological textures in other regions of phase space, for example, at N=5. Finally, we compare the spin textures of our numerically exact meron states to ansatz wave-functions of merons in quantum Hall droplets and find that the ansatz qualitatively describes the meron states.Comment: 4 pages, 5 figures; minor title change, typos fixe

    The classroom as a research community: an innovative methodological approach for e-learning.

    Get PDF
    The crisis generated by the pandemic has also affected our education system and challenged traditional teaching/learning models both in school and university. Technology has changed learning and emphasized the collaborative and distributed dimensions of knowledge. Classrooms can be considered as knowledge communities, where active learning, the dimension of research, and comparison with peers represent the values of citizenship that is also digital citizenship. The methodological approach defined as "Bayes' class" fits into this context. Bayes' class is a theoretical-operational approach to learning based on research, experience, and discovery. In this paper we present the results of a teaching activity conducted during the lockdown. We started with these questions: how to use technologies to redesign a digitally enhanced learning environment for university internship activities in the look-down phase? How to redesign indirect internship activities? How to continue to accompany future teachers at a distance in building their knowledge, skills, attitudes, and sensibilities? The focus group, conducted at the end of the experience, confirmed that the “Bayes’ Class” teaching setting, promotes a participatory culture based on interaction, peering, and multitasking. In addition, the experience allowed for the enhancement of the indirect internship as a community of practic

    Optical Properties of (SrMnO3)n/(LaMnO3)2n superlattices: an insulator-to-metal transition observed in the absence of disorder

    Full text link
    We measure the optical conductivity of (SrMnO3)n/(LaMnO3)2n superlattices (SL) for n=1,3,5, and 8 and 10 < T < 400 K. Data show a T-dependent insulator to metal transition (IMT) for n \leq 3, driven by the softening of a polaronic mid-infrared band. At n = 5 that softening is incomplete, while at the largest-period n=8 compound the MIR band is independent of T and the SL remains insulating. One can thus first observe the IMT in a manganite system in the absence of the disorder due to chemical doping. Unsuccessful reconstruction of the SL optical properties from those of the original bulk materials suggests that (SrMnO3)n/(LaMnO3)2n heterostructures give rise to a novel electronic state.Comment: Published Online in Nano Letters, November 8, 2010; http://pubs.acs.org/doi/abs/10.1021/nl1022628; 5 pages, 3 figure

    Far-infrared absorption and the metal-to-insulator transition in hole-doped cuprates

    Full text link
    By studying the optical conductivity of BSLCO and YCBCO, we show that the metal-to-insulator transition (MIT) in these hole-doped cuprates is driven by the opening of a small gap at low T in the far infrared. Its width is consistent with the observations of Angle-Resolved Photoemission Spectroscopy in other cuprates, along the nodal line of the k-space. The gap forms as the Drude term turns into a far-infrared absorption, whose peak frequency can be approximately predicted on the basis of a Mott-like transition. Another band in the mid infrared softens with doping but is less sensitive to the MIT.Comment: To be published on Physical Review Letter

    Pressure dependence of the Verwey transition in magnetite: an infrared spectroscopic point of view

    Get PDF
    We investigated the electronic and vibrational properties of magnetite at temperatures from 300 K down to 10 K and for pressures up to 10 GPa by far-infrared reflectivity measurements. The Verwey transition is manifested by a drastic decrease of the overall reflectance and the splitting of the phonon modes as well as the activation of additional phonon modes. In the whole studied pressure range the down-shift of the overall reflectance spectrum saturates and the maximum number of phonon modes is reached at a critical temperature, which sets a lower bound for the Verwey transition temperature Tv_{\mathrm{v}}. Based on these optical results a pressure-temperature phase diagram for magnetite is proposed.Comment: 5 pages, 4 figures; accepted for publication in J. Appl. Phy

    Low loss Ge-on-Si waveguides operating in the 8–14 µm atmospheric transmission window

    Get PDF
    Germanium-on-silicon waveguides were modeled, fabricated and characterized at wavelengths ranging from 7.5 to 11 µm. Measured waveguide losses are below 5 dB/cm for both TE and TM polarization and reach values of ∼ 1 dB/cm for ≥ 10 µm wavelengths for the TE polarization. This work demonstrates experimentally for the first time that Ge-on-Si is a viable waveguide platform for sensing in the molecular fingerprint spectral region. Detailed modeling and analysis is presented to identify the various loss contributions, showing that with practical techniques losses below 1 dB/cm could be achieved across the full measurement range

    Optical properties of V2O3 in its whole phase diagram

    Get PDF
    Vanadium sesquioxide V2O3 is considered a textbook example of Mott-Hubbard physics. In this paper we present an extended optical study of its whole temperature/doping phase diagram as obtained by doping the pure material with M=Cr or Ti atoms (V1-xMx)2O3. We reveal that its thermodynamically stable metallic and insulating phases, although macroscopically equivalent, show very different low-energy electrodynamics. The Cr and Ti doping drastically change both the antiferromagnetic gap and the paramagnetic metallic properties. A slight chromium content induces a mesoscopic electronic phase separation, while the pure compound is characterized by short-lived quasiparticles at high temperature. This study thus provides a new comprehensive scenario of the Mott-Hubbard physics in the prototype compound V2O3

    Evidence of a pressure-induced metallization process in monoclinic VO2_2

    Full text link
    Raman and combined trasmission and reflectivity mid infrared measurements have been carried out on monoclinic VO2_2 at room temperature over the 0-19 GPa and 0-14 GPa pressure ranges, respectively. The pressure dependence obtained for both lattice dynamics and optical gap shows a remarkable stability of the system up to P*\sim10 GPa. Evidence of subtle modifications of V ion arrangements within the monoclinic lattice together with the onset of a metallization process via band gap filling are observed for P>>P*. Differently from ambient pressure, where the VO2_2 metal phase is found only in conjunction with the rutile structure above 340 K, a new room temperature metallic phase coupled to a monoclinic structure appears accessible in the high pressure regime, thus opening to new important queries on the physics of VO2_2.Comment: 5 pages, 3 figure

    A combined experimental and computational study of the pressure dependence of the vibrational spectrum of solid picene C_22H_14

    Full text link
    We present high-quality optical data and density functional perturbation theory calculations for the vibrational spectrum of solid picene (C22_{22}H14_{14}) under pressure up to 8 GPa. First-principles calculations reproduce with a remarkable accuracy the pressure effects on both frequency and intensities of the phonon peaks experimentally observed . Through a detailed analysis of the phonon eigenvectors, We use the projection on molecular eigenmodes to unambiguously fit the experimental spectra, resolving complicated spectral structures, in a system with hundreds of phonon modes. With these projections, we can also quantify the loss of molecular character under pressure. Our results indicate that picene, despite a \sim 20 % compression of the unit cell, remains substantially a molecular solid up to 8 GPa, with phonon modes displaying a smooth and uniform hardening with pressure. The Grueneisen parameter of the 1380 cm^{-1} a_1 Raman peak (γp=0.1\gamma_p=0.1) is much lower than the effective value (γd=0.8\gamma_d=0.8) due to K doping. This is an indication that the phonon softening in K doped samples is mainly due to charge transfer and electron-phonon coupling.Comment: Replaced with final version (PRB
    corecore