11,762 research outputs found
Hyperfine splitting in non-relativistic QED: uniqueness of the dressed hydrogen atom ground state
We consider a free hydrogen atom composed of a spin-1/2 nucleus and a
spin-1/2 electron in the standard model of non-relativistic QED. We study the
Pauli-Fierz Hamiltonian associated with this system at a fixed total momentum.
For small enough values of the fine-structure constant, we prove that the
ground state is unique. This result reflects the hyperfine structure of the
hydrogen atom ground state.Comment: 22 pages, 3 figure
Deep and superficial amygdala nuclei projections revealed in vivo by probabilistic tractography
Copyright © 2011 Society for Neuroscience and the authors. The The Journal of Neuroscience uses a Creative Commons Attribution-NonCommercial-ShareAlike licence: http://creativecommons.org/licenses/by-nc-sa/4.0/.Despite a homogenous macroscopic appearance on magnetic resonance images, subregions of the amygdala express distinct functional profiles as well as corresponding differences in connectivity. In particular, histological analysis shows stronger connections for superficial (i.e., centromedial and cortical), compared with deep (i.e., basolateral and other), amygdala nuclei to lateral orbitofrontal cortex and stronger connections of deep compared with superficial, nuclei to polymodal areas in the temporal pole. Here, we use diffusion weighted imaging with probabilistic tractography to investigate these connections in humans. We use a data-driven approach to segment the amygdala into two subregions using k-means clustering. The identified subregions are spatially contiguous and their location corresponds to deep and superficial nuclear groups. Quantification of the connection strength between these amygdala clusters and individual target regions corresponds to qualitative histological findings in non-human primates, indicating such findings can be extrapolated to humans. We propose that connectivity profiles provide a potentially powerful approach for in vivo amygdala parcellation and can serve as a guide in studies that exploit functional and anatomical neuroimaging.The Wellcome Trust, a Max Planck Research Award and Swiss National Science Foundation
Building Community Among Diversity: Legal Services for Impoverished Immigrants
Part I of this Essay introduces the Immigrants\u27 Legal Needs Study (ILNS), which provides most of the data for this Essay. Part II focuses on immigrants\u27 access to legal assistance. It analyzes the problems and needs of recently arrived poor immigrants-both immigrants share with longer established poor residents as well as special needs related to immigrants\u27 residency status. Part III addresses the present day demography of our urban communities, including the levels of new immigration. Parts IV and V detail the legal difficulties faced by poor immigrants, the ways they deal with these problems, and community responses to these needs. Parts VI and VII explain the legal status differences between immigrants and the ways these differences impact their access to legal assistance. Finally, Part VIII suggests a vision for community renewal
Coexistence of Antiferromagnetism and Superconductivity in Electron-doped High-Tc Superconductors
We present magnetotransport evidence for antiferromagnetism in films of the
electron-doped cuprates PrCeCuO. Our results show clear
signature of static antiferromagnetism up to optimal doping x=0.15, with a
quantum phase transition close to x=0.16, and a coexistence of static
antiferromagnetism and superconductivity for 0.12x0.15
- …