351 research outputs found

    SPARC is a new myeloid-derived suppressor cell marker licensing suppressive activities

    Get PDF
    Myeloid-derived suppressor cells (MDSC) are well-known key negative regulators of the immune response during tumor growth, however scattered is the knowledge of their capacity to influence and adapt to the different tumor microenvironments and of the markers that identify those capacities. Here we show that the secreted protein acidic and rich in cysteine (SPARC) identifies in both human and mouse MDSC with immune suppressive capacity and pro-tumoral activities including the induction of epithelial-to-mesenchymal transition (EMT) and angiogenesis. In mice the genetic deletion of SPARC reduced MDSC immune suppression and reverted EMT. Sparc−/− MDSC were less suppressive overall and the granulocytic fraction was more prone to extrude neutrophil extracellular traps (NET). Surprisingly, arginase-I and NOS2, whose expression can be controlled by STAT3, were not down-regulated in Sparc−/− MDSC, although less suppressive than wild type (WT) counterpart. Flow cytometry analysis showed equal phosphorylation of STAT3 but reduced ROS production that was associated with reduced nuclear translocation of the NF-kB p50 subunit in Sparc−/− than WT MDSC. The limited p50 in nuclei reduce the formation of the immunosuppressive p50:p50 homodimers in favor of the p65:p50 inflammatory heterodimers. Supporting this hypothesis, the production of TNF by Sparc−/− MDSC was significantly higher than by WT MDSC. Although associated with tumor-induced chronic inflammation, TNF, if produced at high doses, becomes a key factor in mediating tumor rejection. Therefore, it is foreseeable that an unbalance in TNF production could skew MDSC toward an inflammatory, anti-tumor phenotype. Notably, TNF is also required for inflammation-driven NETosis. The high level of TNF in Sparc−/− MDSC might explain their increased spontaneous NET formation as that we detected both in vitro and in vivo, in association with signs of endothelial damage. We propose SPARC as a new potential marker of MDSC, in both human and mouse, with the additional feature of controlling MDSC suppressive activity while preventing an excessive inflammatory state through the control of NF-kB signaling pathway

    Net gain: Low-cost, trawl-associated eDNA samplers upscale ecological assessment of marine demersal communities

    Get PDF
    Marine biodiversity stewardship requires costly and time-consuming capture-based monitoring techniques, which limit our understanding of the distribution and status of marine populations. Here, we reconstruct catch and demersal community compo- sition in a set of 24 fishing sites in the central Tyrrhenian Sea by gathering environ- mental DNA (eDNA) aboard commercial bottom-trawl fishing vessels. We collected genetic material from two sources: the water draining from the net after the end of hauling operations (“slush”), and custom-made rolls of gauze tied to a hollow perfo- rated sphere placed inside the fishing net (“metaprobe”). Species inventories were generated using a combination of fish-specific (Tele02 12S) and universal metazoan (COI) molecular markers. DNA metabarcoding data recovered over 90% of the caught taxa and accurately reconstructed the overall structure of the assemblages of the examined sites, reflecting expected differences linked to major drivers of community structure in Mediterranean demersal ecosystems, such as depth, distance from the coast, and fishing effort. eDNA also returned a “biodiversity bonus” mostly consisting of pelagic species not catchable by bottom trawl but present in the surrounding en- vironment. Overall, the “metaprobe” gauzes showed a greater biodiversity detection power as compared to “slush” water, both qualitatively and quantitatively, strengthen- ing the idea that these low-cost sampling devices can play a major role in upscaling the gathering of data on both catch composition and the broader ecological charac- teristics of marine communities sustaining trawling activities. This approach has the potential to drastically expand the reach of ecological monitoring, whereby fishing vessels operating across the oceans may serve as opportunistic scientific platforms to increase the strength and granularity of marine biodiversity data

    SPARC is a new myeloid-derived suppressor cell marker licensing suppressive activities

    Get PDF
    Myeloid-derived suppressor cells (MDSC) are well-known key negative regulators of the immune response during tumor growth, however scattered is the knowledge of their capacity to influence and adapt to the different tumor microenvironments and of the markers that identify those capacities. Here we show that the secreted protein acidic and rich in cysteine (SPARC) identifies in both human and mouse MDSC with immune suppressive capacity and pro-tumoral activities including the induction of epithelial-to-mesenchymal transition (EMT) and angiogenesis. In mice the genetic deletion of SPARC reduced MDSC immune suppression and reverted EMT. Sparc-/- MDSC were less suppressive overall and the granulocytic fraction was more prone to extrude neutrophil extracellular traps (NET). Surprisingly, arginase-I and NOS2, whose expression can be controlled by STAT3, were not down-regulated in Sparc-/- MDSC, although less suppressive than wild type (WT) counterpart. Flow cytometry analysis showed equal phosphorylation of STAT3 but reduced ROS production that was associated with reduced nuclear translocation of the NF-kB p50 subunit in Sparc-/- than WT MDSC. The limited p50 in nuclei reduce the formation of the immunosuppressive p50:p50 homodimers in favor of the p65:p50 inflammatory heterodimers. Supporting this hypothesis, the production of TNF by Sparc-/- MDSC was significantly higher than by WT MDSC. Although associated with tumor-induced chronic inflammation, TNF, if produced at high doses, becomes a key factor in mediating tumor rejection. Therefore, it is foreseeable that an unbalance in TNF production could skew MDSC toward an inflammatory, anti-tumor phenotype. Notably, TNF is also required for inflammation-driven NETosis. The high level of TNF in Sparc-/- MDSC might explain their increased spontaneous NET formation as that we detected both in vitro and in vivo, in association with signs of endothelial damage. We propose SPARC as a new potential marker of MDSC, in both human and mouse, with the additional feature of controlling MDSC suppressive activity while preventing an excessive inflammatory state through the control of NF-kB signaling pathway

    Blastic plasmacytoid dendritic cell neoplasm: Genomics mark epigenetic dysregulation as a primary therapeutic target

    Get PDF
    Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and aggressive hematologic malignancy for which there is still no effective B therapy. In order to identify genetic alterations useful for a new treatment design, we used whole-exome sequencing to analyze 14 BPDCN patients and the patient-derived CAL-1 cell line. The functional enrichment analysis of mutational data reported the epigenetic regulatory program to be the most significantly undermined (P<0.0001). In particular, twenty-five epigenetic modifiers were found mutated (e.g. ASXL1, TET2, SUZ12, ARID1A, PHF2, CHD8); ASXL1 was the most frequently affected (28.6% of cases). To evaluate the impact of the identified epigenetic mutations at the gene-expression and Histone H3 lysine 27 trimethylation/acetylation levels, we performed additional RNA and pathology tissue-chromatin immunoprecipitation sequencing experiments. The patients displayed enrichment in gene signatures regulated by methylation and modifiable by decitabine administration, shared common H3K27-acetylated regions, and had a set of cell-cycle genes aberrantly up-regulated and marked by promoter acetylation. Collectively, the integration of sequencing data showed the potential of a therapy based on epigenetic agents. Through the adoption of a preclinical BPDCN mouse model, established by CAL-1 cell line xenografting, we demonstrated the efficacy of the combination of the epigenetic drugs 5’-azacytidine and decitabine in controlling disease progression in vivo

    Petrologic and Geochemical Composition of the AND-2A Core, ANDRILL Southern McMurdo Sound Project, Antartica

    Get PDF
    The compositional record of the AND-2A drillcore is examined using petrological, sedimentological, volcanological and geochemical analysis of clasts, sediments and pore waters. Preliminary investigations of basement clasts (granitoids and metasediments) indicate both local and distal sources corresponding to variable ice-volume and ice-flow directions. Low abundance of sedimentary clasts (e.g., arkose, litharenite) suggests reduced contributions from sedimentary covers while intraclasts (e.g., diamictite, conglomerate) attest to intrabasinal reworking. Volcanic material includes pyroclasts (e.g., pumice, scoria), sediments and lava. Primary and reworked tephra layers occur within the Early Miocene interval (1093 to 640 metres below sea floor). The compositions of volcanic clasts reveal a diversity of alkaline types derived from the McMurdo Volcanic Group. Finer-grained sediments (e.g., sandstone, siltstone) show increases in biogenic silica and volcanic glass from 230 to 780 mbsf and higher proportions of terrigenous material ca. 350 to 750 mbsf and below 970 mbsf. Basement clast assemblages suggest a dominant provenance from the Skelton Glacier - Darwin Glacier area and from the Ferrar Glacier - Koettlitz Glacier area. Provenance of sand grains is consistent with clast sources. Thirteen Geochemical Units are established based on compositional trends derived from continuous XRF scanning. High values of Fe and Ti indicate terrigenous and volcanic sources, whereas high Ca values signify either biogenic or diagenic sources. Highly alkaline and saline pore waters were produced by chemical exchange with glass at moderately elevated temperatures

    Health-related quality of life in patients with primary open-angle glaucoma. An italian multicentre observational study

    Get PDF
    PurposeAs a progressive condition, glaucoma may impair health-related quality of life (HRQoL), due to vision loss and other factors. This study evaluated HRQoL in a cohort of patients treated for primary open-angle glaucoma (POAG) and assessed its association with clinical features. MethodsThis was an Italian, multicentre, cross-sectional, observational study with the subgroup of newly diagnosed patients with POAG prospectively followed up for one year. Patients with previous or new diagnosis (or strong clinical suspicion) of POAG aged >18years were considered eligible. Information was collected on demographic characteristics, medical history, clinical presentation and POAG treatments. HRQoL was measured using the 25-item National Eye Institute Visual Function Questionnaire (NEI-VFQ-25) and Glaucoma Symptom Scale (GSS). Subscale and total scores were obtained and a Pearson correlation coefficient between instruments' scores calculated. ResultsA total of 3227 patients were enrolled from 2012 to 2013 and 3169 were analysed. Mean age was 66.9years. A total of 93.8% had a previous diagnosis (median duration: 8.0years). Median values for mean deviation and pattern standard deviation were 3.9 and 3.6 dB, respectively. Mean scores on most subscales of the NEI-VFQ-25 exceeded 75.0 and mean GSS subscale scores ranged between 70.8 and 79.7 (with a total mean score of 74.8). HRQoL scores on both scales were significantly inversely associated with POAG severity. ConclusionIn this large sample of Italians treated for POAG, disease severity was limited and HRQoL scores were high. QoL decreased with advancing disease severity. These findings confirm the role of vision loss in impairing QoL in POAG, underlying the importance of timely detection and appropriate treatment
    • 

    corecore