13,092 research outputs found
Quantitative composition and distribution of the macrobenthic invertebrate fauna of the Continental Shelf ecosystems of the Northeastern United States
From the mid-1950's to the mid-1960's a series of quantitative surveys of the macrobenthic invertebrate fauna were conducted in the offshore New England region (Maine to Long Island, New York). The surveys were designed to 1) obtain measures of macrobenthic standing crop expressed in terms of density and biomass; 2) determine the taxonomic
composition of the fauna (ca. 567 species); 3) map the general features of macrobenthic distribution; and 4) evaluate the fauna's relationships to water depth, bottom type, temperature range, and sediment organic carbon content. A total of 1,076 samples, ranging from 3
to 3,974 m in depth, were obtained and analyzed.
The aggregate macrobenthic fauna consists of 44 major taxonomic groups (phyla, classes, orders). A striking fact is that only five of those groups (belonging to four phyla)
account for over 80% of both total biomass and number of individuals of the macrobenthos. The five dominant groups are Bivalvia, Annelida, Amphipoda, Echninoidea, and
Holothuroidea.
Other salient features pertaining to the macrobenthos of the region are the following: substantial differences in quantity exist among different geographic subareas within the region, but with a general trend that both density and biomass increase from northeast to southwest; both density and biomass decrease with increasing depth; the composition of the bottom sediments significantly influences both the kind and quantity of macrobenthic invertebrates, the largest quantities of both measures of abundance occurring in the coarser grained sediments and diminishing with decreasing particle size; areas with marked seasonal
changes in water temperature support an abundant and diverse fauna, whereas a uniform temperature regime is associated with a sparse, less diverse fauna; and no detectable trends are evident in the quantitative composition of the macrobenthos in relation to sediment organic carbon content. (PDF file contains 246 pages.
An experimental study of surface pressure fluctuations in a separating turbulent boundary layer
Measurements of streamwise velocity fluctuation and surface pressure fluctuation spectra and wavespeeds are reported for a well-documented separating turbulent boundary layer. Because a portion of the acoustic pressure fluctuations is the same across the nominally two-dimensional turbulent flow, it is possible to decompose two microphone signals and obtain directly the turbulent flow contributions to the surface pressure spectra. The rms surface pressure fluctuation p' and spectra phi(omega) increase through the adverse pressure gradient attached flow region and the detached flow zone and scale on the maximum turbulent shearing stress tau(M); p'/tau(M) increases to the detachment location and decreases downstream due to the rapid movement of the pressure-fluctuation-producing motions away from the wall after the beginning of intermittent backflow. At lower frequencies for the attached flow phi(omega) is approximately omega to the -0.7 while phi(omega) is approximately omega to the -3 at higher frequencies. After the beginning of intermittent backflow, phi(omega) varies with omega at low frequencies and omega to the -3 at high frequencies; farther downstream the lower frequency range varies with omega to the 2.4. The surface pressure fluctuation celerity for the attached flow increases with frequency and agrees with the semi-logarithmic overlap equation of Panton and Linebarger. After the beginning of the separation process, the wavespeed decreases because of the oscillation of the instantaneous wavespeed direction and the streamwise coherence decreases drastically
Electronic controller for reciprocating rotary crystallizer
An electronic controller for a reciprocating rotary crystallizer is described. The heart of this system is the electronic timer circuit. A schematic along with a detailed description of its operation is given
A polymer coated cicaprost-eluting stent increases neointima formation and impairs vessel function in the rabbit iliac artery
Drug-eluting stents have been successful in reducing in-stent restenosis but are not suitable for all lesion types and have been implicated in causing late stent thrombosis due to incomplete regeneration of the endothelial cell layer. In this study we implanted stents coated with cicaprost, a prostacyclin analogue with a long plasma half-life and antiproliferative effects on vascular smooth muscle cells, into the iliac arteries of rabbits. At 28-day follow-up we compared neointima formation within the stented vessels and vascular function in adjacent vessels, to assess if cicaprost could reduce restenosis without impairing vessel function. Arteries implanted with cicaprost eluting stents had significantly more neointima compared to bare metal stents. In adjacent segments of artery, endothelium-dependent relaxation was impaired by the cicaprost-eluting stent but vasodilation to an endothelium-independent vasodilator was maintained. We conclude that the presence of the polymer and sub-optimal release of cicaprost from the stent may be responsible for the increased neointma and impaired functional recovery of the endothelium observed. Further experiments should be aimed at optimising release of cicaprost and exploring different stent polymer coatings
Polarization modes for strong-field gravitational waves
Strong-field gravitational plane waves are often represented in either the
Rosen or Brinkmann forms. These forms are related by a coordinate
transformation, so they should describe essentially the same physics, but the
two forms treat polarization states quite differently. Both deal well with
linear polarizations, but there is a qualitative difference in the way they
deal with circular, elliptic, and more general polarization states. In this
article we will describe a general algorithm for constructing arbitrary
polarization states in the Rosen form.Comment: 4 pages. Prepared for the proceedings of ERE2010 (Granada, Spain
Aircraft System Analysis of Technology Benefits to Civil Transport Rotorcraft
An aircraft systems analysis was conducted to evaluate the net benefits of advanced technologies on two conceptual civil transport rotorcraft, to quantify the potential of future civil rotorcraft to become operationally viable and economically competitive, with the ultimate goal of alleviating congestion in our airways, runways and terminals. These questions are three of many that must be resolved for the successful introduction of civil transport rotorcraft: 1) Can civil transport rotorcraft actually relieve current airport congestion and improve overall air traffic and passenger throughput at busy hub airports? What is that operational scenario? 2) Can advanced technology make future civil rotorcraft economically competitive in scheduled passenger transport? What are those enabling technologies? 3) What level of investment is necessary to mature the key enabling technologies? This study addresses the first two questions, and several others, by applying a systems analysis approach to a broad spectrum of potential advanced technologies at a conceptual level of design. The method was to identify those advanced technologies that showed the most promise and to quantify their benefits to the design, development, production, and operation of future civil rotorcraft. Adjustments are made to sizing data by subject matter experts to reflect the introduction of new technologies that offer improved performance, reduced weight, reduced maintenance, or reduced cost. This study used projected benefits from new, advanced technologies, generally based on research results, analysis, or small-scale test data. The technologies are identified, categorized and quantified in the report. The net benefit of selected advanced technologies is quantified for two civil transport rotorcraft concepts, a Single Main Rotor Compound (SMRC) helicopter designed for 250 ktas cruise airspeed and a Civil Tilt Rotor (CTR) designed for 350 ktas cruise airspeed. A baseline design of each concept was sized for a representative civil passenger transport mission, using current technology. Individual advanced technologies are quantified and applied to resize the aircraft, thereby quantifying the net benefit of that technology to the rotorcraft. Estimates of development cost, production cost and operating and support costs are made with a commercial cost estimating program, calibrated to Boeing products with adjustments for future civil production processes. A cost metric of cash direct operating cost per available seat-mile (DOC ASM) is used to compare the cost benefit of the technologies. The same metric is used to compare results with turboprop operating costs. Reduced engine SFC was the most advantageous advanced technology for both rotorcraft concepts. Structural weight reduction was the second most beneficial technology, followed by advanced drive systems and then by technology for rotorcraft performance. Most of the technologies evaluated in this report should apply similarly to conventional helicopters. The implicit assumption is that resources will become available to mature the technologies for fullscale production aircraft. That assumption is certainly the weak link in any forecast of future possibilities. The analysis serves the purpose of identifying which technologies offer the most potential benefit, and thus the ones that should receive the highest priority for continued development. This study directly addressed the following NASA Subsonic Rotary Wing (SRW) subtopics: SR W.4.8.I.J Establish capability for rotorcraft system analysis and SRW. 4.8.I.4 Conduct limited technology benefit assessment on baseline rotorcraft configurations
Module identification in bipartite and directed networks
Modularity is one of the most prominent properties of real-world complex
networks. Here, we address the issue of module identification in two important
classes of networks: bipartite networks and directed unipartite networks. Nodes
in bipartite networks are divided into two non-overlapping sets, and the links
must have one end node from each set. Directed unipartite networks only have
one type of nodes, but links have an origin and an end. We show that directed
unipartite networks can be conviniently represented as bipartite networks for
module identification purposes. We report a novel approach especially suited
for module detection in bipartite networks, and define a set of random networks
that enable us to validate the new approach
Postoperative and Postpartum Onset of Chronic Parkinsonism: Four Case Reports
Background: Certain environmental exposures have been linked to the development of parkinsonism. We report four cases in which the onset of chronic parkinsonism occurred immediately or soon after surgery or childbirth.
Results: Exposure to certain anesthetic agents in susceptible individuals or the physiological changes associated with surgery or childbirth may have contributed to or precipitated the development of parkinsonism.
Conclusion: Clinicians should be aware that postoperative or postpartum settings are potential precipitants of chronic parkinsonism. More research is needed to clarify contributing factors
"Making Safety Happen" Through Probabilistic Risk Assessment at NASA
NASA is using Probabilistic Risk Assessment (PRA) as one of the tools in its Safety & Mission Assurance (S&MA) tool belt to identify and quantify risks associated with human spaceflight. This paper discusses some of the challenges and benefits associated with developing and using PRA for NASA human space programs. Some programs have entered operation prior to developing a PRA, while some have implemented PRA from the start of the program. It has been observed that the earlier a design change is made in the concept or design phase, the less impact it has on cost and schedule. Not finding risks until the operation phase yields much costlier design changes and major delays, which can result in discussions of just accepting the risk. Risk contributors identified by PRA are not just associated with hardware failures. They include but are not limited to crew fatality due to medical causes, the environment the vehicle and crew are exposed to, the software being used, and the reliability of the crew performing required actions. Some programs have entered operation prior to developing a PRA, and while PRA can still provide a benefit for operations and future design trades, the benefit of implementing PRA from the start of the program provides the added benefit of informing design and reducing risk early in program development. Currently, NASAs International Space Station (ISS) program is in its 20th year of on-orbit operations around the Earth and has several new programs in the design phase preparing to enter the operation phase all of which have active (or living) PRAs. These programs incorporate PRA as part of their Risk-Informed, Decision-Making (RIDM) process. For new NASA human spaceflight programs discussion begins with mission concept, establishing requirements, forming the PRA team, and continues through the design cycles into the operational phase. Several examples of PRA related applications and observed lessons are included
- …