44 research outputs found

    Rayleigh-Taylor instability of crystallization waves at the superfluid-solid 4He interface

    Full text link
    At the superfluid-solid 4He interface there exist crystallization waves having much in common with gravitational-capillary waves at the interface between two normal fluids. The Rayleigh-Taylor instability is an instability of the interface which can be realized when the lighter fluid is propelling the heavier one. We investigate here the analogues of the Rayleigh-Taylor instability for the superfluid-solid 4He interface. In the case of a uniformly accelerated interface the instability occurs only for a growing solid phase when the magnitude of the acceleration exceeds some critical value independent of the surface stiffness. For the Richtmyer-Meshkov limiting case of an impulsively accelerated interface, the onset of instability does not depend on the sign of the interface acceleration. In both cases the effect of crystallization wave damping is to reduce the perturbation growth-rate of the Taylor unstable interface.Comment: 8 pages, 2 figures, RevTe

    Hydrodynamic instability during non-uniform growth of a helium crystal

    Full text link
    We analyze an analog of the hydrodynamic Rayleigh-Taylor instability for the liquid-solid phase interface under non-uniform growth of the solid phase. The development of the instability starts on conditions of an accelerated interface growth and if the magnitude of acceleration exceeds some critical value. The plane and spherical shapes of the interface are considered. The observation of the instability can be expected for helium crystals in the course of their abnormal fast growth.Comment: Revtex, 5 pages, 3 figure

    Underbarrier nucleation kinetics in a metastable quantum liquid near the spinodal

    Full text link
    We develop a theory in order to describe the effect of relaxation in a condensed medium upon the quantum decay of a metastable liquid near the spinodal at low temperatures. We find that both the regime and the rate of quantum nucleation strongly depend on the relaxation time and its temperature behavior. The quantum nucleation rate slows down with the decrease of the relaxation time. We also discuss the low temperature experiments on cavitation in normal 3^3He and superfluid 4^4He at negative pressures. It is the sharp distinctions in the high frequency sound mode and in the temperature behavior of the relaxation time that make the quantum cavitation kinetics in 3^3He and 4^4He completely different in kind.Comment: 10 pages, 2 figure

    Improved Single Sector Supersymmetry Breaking

    Get PDF
    Building on recent work by N. Arkani-Hamed and the present authors, we construct realistic models that break supersymmetry dynamically and give rise to composite quarks and leptons, all in a single strongly-coupled sector. The most important improvement compared to earlier models is that the second-generation composite states correspond to dimension-2 "meson" operators in the ultraviolet. This leads to a higher scale for flavor physics, and gives a completely natural suppression of flavor-changing neutral currents. We also construct models in which the hierarchy of Yukawa couplings is explained by the dimensionality of composite states. These models provide an interesting and viable alternative to gravity- and gauge-mediated models. The generic signatures are unification of scalar masses with different quantum numbers at the compositeness scale, and lighter gaugino, Higgsino, and third-generation squark and slepton masses. We also analyze large classes of models that give rise to both compositeness and supersymmetry breaking, based on gauge theories with confining, fixed-point, or free-magnetic dynamics.Comment: 34 pages, LaTeX2
    corecore