2,869 research outputs found
Outcomes of the International Oceanographic Data and Information Exchange Ocean Biogeographic Information System OBIS-Event-Data Workshop on Animal Tagging and Tracking
The Ocean Biogeographic Information System (OBIS) began in 2000 as the repository for data from the Census of Marine Life. Since that time, OBIS has expanded its goals beyond simply hosting data to supporting more aspects of marine conservation (Pooter et al. 2017). In order to accomplish those goals, the OBIS secretariat in partnership with its European node (EurOBIS) hosted at the Flanders Marine Institute (VLIZ, Belgium), and the Intergovernmental Oceanographic Commission (IOC) Committee on International Oceanographic Data and Information Exchange (IODE, 23rd session, March 2015, Brugge) established a 2-year pilot project to address a particularly problematic issue that environmental data collected as part of marine biological research were being disassociated from the biological data. OBIS-Event-Data is the solution that was developed from that pilot project, which devised a method for keeping environmental data together with the biological data (Pooter et al. 2017). OBIS is seeking early adopters of the new data standard OBIS-Event-Data from among the marine biodiversity monitoring communities, to further validate the data standard, and develop data products and scientific applications to support the enhancement of Biological and Ecosystem Essential Ocean Variables (EOVs) in the framework of the Global Ocean Observing System (GOOS) and the Marine Biodiversity Observation Network of the Group on Earth Observations (GEO BON MBON). After the successful 2-year IODE pilot project OBIS-ENV-DATA, the IOC established a new 2-year IODE pilot project OBIS-Event-Data for Scientific Applications (2017-2019). The OBIS-Event-Data data standard, building on Darwin Core, provides a technical solution for combined biological and environmental data, and incorporates details about sampling methods and effort, including event hierarchy. It also implements standardization of parameters involved in biological, environmental, and sampling details using an international standard controlled vocabulary (British Oceanographic Data Centre Natural Environment Research Council). A workshop organized by IODE/OBIS in April brought together major animal tagging and tracking networks such as the Ocean Tracking Network (OTN), the Animal Telemetry Network (ATN), the Integrated Marine Observing System (IMOS), the European Tracking Network (ETN) and the Acoustic Tracking Array Platform (ATAP) to test the OBIS-Event- Data standard through the development of some data products and science applications. Additionally, this workshop contributes to the further maturation of the GOOS EOV on fish as well as the EOV on birds, mammals and turtles. We will present the outcomes as well as any lessons learned from this workshop on problems, solutions, and applications of using Darwin Core/OBIS-Event-Data for biologging data
SICANE: a Detector Array for the Measurement of Nuclear Recoil Quenching Factors using Monoenergetic Neutron Beam
SICANE is a neutron scattering multidetector facility for the determination
of the quenching factor (ratio of the response to nuclear recoils and to
electrons) of cryogenic detectors used in direct WIMP searches. Well collimated
monoenergetic neutron beams are obtained with inverse (p,n) reactions. The
facility is described, and results obtained for the quenching factors of
scintillation in NaI(Tl) and of heat and ionization in Ge are presented.Comment: 30 pages, Latex, 11 figures. Submitted to NIM
Responses of Southern Ocean seafloor habitats and communities to global and local drivers of change
Knowledge of life on the Southern Ocean seafloor has substantially grown since the beginning of this century with increasing ship-based surveys and regular monitoring sites, new technologies and greatly enhanced data sharing. However, seafloor habitats and their communities exhibit high spatial variability and heterogeneity that challenges the way in which we assess the state of the Southern Ocean benthos on larger scales. The Antarctic shelf is rich in diversity compared with deeper water areas, important for storing carbon (“blue carbon”) and provides habitat for commercial fish species. In this paper, we focus on the seafloor habitats of the Antarctic shelf, which are vulnerable to drivers of change including increasing ocean temperatures, iceberg scour, sea ice melt, ocean acidification, fishing pressures, pollution and non-indigenous species. Some of the most vulnerable areas include the West Antarctic Peninsula, which is experiencing rapid regional warming and increased iceberg-scouring, subantarctic islands and tourist destinations where human activities and environmental conditions increase the potential for the establishment of non-indigenous species and active fishing areas around South Georgia, Heard and MacDonald Islands. Vulnerable species include those in areas of regional warming with low thermal tolerance, calcifying species susceptible to increasing ocean acidity as well as slow-growing habitat-forming species that can be damaged by fishing gears e.g., sponges, bryozoan, and coral species. Management regimes can protect seafloor habitats and key species from fishing activities; some areas will need more protection than others, accounting for specific traits that make species vulnerable, slow growing and long-lived species, restricted locations with optimum physiological conditions and available food, and restricted distributions of rare species. Ecosystem-based management practices and long-term, highly protected areas may be the most effective tools in the preservation of vulnerable seafloor habitats. Here, we focus on outlining seafloor responses to drivers of change observed to date and projections for the future. We discuss the need for action to preserve seafloor habitats under climate change, fishing pressures and other anthropogenic impacts
Study of the B +→ J / ψ Λ ¯ p decay in proton-proton collisions at √s = 8 TeV
A study of the B +→ J / ψ Λ ¯ p decay using proton-proton collision data collected at s = 8 TeV by the CMS experiment at the LHC, corresponding to an integrated luminosity of 19.6 fb−1, is presented. The ratio of branching fractions B(B+→J/ψΛ¯p)/B(B+→J/ψK∗(892)+) is measured to be (1.054 ± 0.057(stat) ± 0.035(syst) ± 0.011(B))%, where the last uncertainty reflects the uncertainties in the world-average branching fractions of Λ ¯ and K*(892) + decays to reconstructed final states. The invariant mass distributions of the J / ψ Λ ¯ , J/ψp, and Λ ¯ p systems produced in the B +→ J / ψ Λ¯ p decay are investigated and found to be inconsistent with the pure phase space hypothesis. The analysis is extended by using a model-independent angular amplitude analysis, which shows that the observed invariant mass distributions are consistent with the contributions from excited kaons decaying to the Λ ¯ p system. [Figure not available: see fulltext.
Recommended from our members
Measurement of the top quark Yukawa coupling from t t kinematic distributions in the lepton+jets final state in proton-proton collisions at s =13 TeV MEASUREMENT of the TOP QUARK YUKAWA COUPLING from ... SIRUNYAN et al.
Results are presented for an extraction of the top quark Yukawa coupling from top quark-antiquark (tt) kinematic distributions in the lepton plus jets final state in proton-proton collisions, based on data collected by the CMS experiment at the LHC at s=13 TeV, corresponding to an integrated luminosity of 35.8 fb-1. Corrections from weak boson exchange, including Higgs bosons, between the top quarks can produce large distortions of differential distributions near the energy threshold of tt production. Therefore, precise measurements of these distributions are sensitive to the Yukawa coupling. Top quark events are reconstructed with at least three jets in the final state, and a novel technique is introduced to reconstruct the tt system for events with one missing jet. This technique enhances the experimental sensitivity in the low invariant mass region, Mtt. The data yields in Mtt, the rapidity difference |yt-yt|, and the number of reconstructed jets are compared with distributions representing different Yukawa couplings. These comparisons are used to measure the ratio of the top quark Yukawa coupling to its standard model predicted value to be 1.07-0.43+0.34 with an upper limit of 1.67 at the 95% confidence level
Search for new neutral Higgs bosons through the H → ZA→ ℓ+ℓ−b b ¯ process in pp collisions at √s = 13 TeV
This paper reports on a search for an extension to the scalar sector of the standard model, where a new CP-even (odd) boson decays to a Z boson and a lighter CP-odd (even) boson, and the latter further decays to a b quark pair. The Z boson is reconstructed via its decays to electron or muon pairs. The analysed data were recorded in proton-proton collisions at a center-of-mass energy s = 13 TeV, collected by the CMS experiment at the LHC during 2016, corresponding to an integrated luminosity of 35.9 fb−1. Data and predictions from the standard model are in agreement within the uncertainties. Upper limits at 95% confidence level are set on the production cross section times branching fraction, with masses of the new bosons up to 1000 GeV. The results are interpreted in the context of the two-Higgs-doublet model. [Figure not available: see fulltext.]
Search for a heavy Higgs boson decaying to a pair of W bosons in proton-proton collisions at √s = 13 TeV
A search for a heavy Higgs boson in the mass range from 0.2 to 3.0 TeV, decaying to a pair of W bosons, is presented. The analysis is based on proton-proton collisions at s = 13 TeV recorded by the CMS experiment at the LHC in 2016, corresponding to an integrated luminosity of 35.9 fb−1. The W boson pair decays are reconstructed in the 2ℓ2ν and ℓν2q final states (with ℓ = e or μ). Both gluon fusion and vector boson fusion production of the signal are considered. Interference effects between the signal and background are also taken into account. The observed data are consistent with the standard model (SM) expectation. Combined upper limits at 95% confidence level on the product of the cross section and branching fraction exclude a heavy Higgs boson with SM-like couplings and decays up to 1870 GeV. Exclusion limits are also set in the context of a number of two-Higgs-doublet model formulations, further reducing the allowed parameter space for SM extensions. [Figure not available: see fulltext.
- …