94 research outputs found

    Proposed Definitions of T Cell-Mediated Rejection and Tubulointerstitial Inflammation as Clinical Trial Endpoints in Kidney Transplantation

    Full text link
    The diagnosis of acute T cell-mediated rejection (aTCMR) after kidney transplantation has considerable relevance for research purposes. Its definition is primarily based on tubulointerstitial inflammation and has changed little over time; aTCMR is therefore a suitable parameter for longitudinal data comparisons. In addition, because aTCMR is managed with antirejection therapies that carry additional risks, anxieties, and costs, it is a clinically meaningful endpoint for studies. This paper reviews the history and classifications of TCMR and characterizes its potential role in clinical trials: a role that largely depends on the nature of the biopsy taken (indication vs protocol), the level of inflammation observed (e.g., borderline changes vs full TCMR), concomitant chronic lesions (chronic active TCMR), and the therapeutic intervention planned. There is ongoing variability-and ambiguity-in clinical monitoring and management of TCMR. More research, to investigate the clinical relevance of borderline changes (especially in protocol biopsies) and effective therapeutic strategies that improve graft survival rates with minimal patient morbidity, is urgently required. The present paper was developed from documentation produced by the European Society for Organ Transplantation (ESOT) as part of a Broad Scientific Advice request that ESOT submitted to the European Medicines Agency for discussion in 2020. This paper proposes to move toward refined definitions of aTCMR and borderline changes to be included as primary endpoints in clinical trials of kidney transplantation.Copyright © 2022 Seron, Rabant, Becker, Roufosse, Bellini, Böhmig, Budde, Diekmann, Glotz, Hilbrands, Loupy, Oberbauer, Pengel, Schneeberger and Naesens

    Proposed Definitions of Antibody-Mediated Rejection for Use as a Clinical Trial Endpoint in Kidney Transplantation

    Full text link
    Antibody-mediated rejection (AMR) is caused by antibodies that recognize donor human leukocyte antigen (HLA) or other targets. As knowledge of AMR pathophysiology has increased, a combination of factors is necessary to confirm the diagnosis and phenotype. However, frequent modifications to the AMR definition have made it difficult to compare data and evaluate associations between AMR and graft outcome. The present paper was developed following a Broad Scientific Advice request from the European Society for Organ Transplantation (ESOT) to the European Medicines Agency (EMA), which explored whether updating guidelines on clinical trial endpoints would encourage innovations in kidney transplantation research. ESOT considers that an AMR diagnosis must be based on a combination of histopathological factors and presence of donor-specific HLA antibodies in the recipient. Evidence for associations between individual features of AMR and impaired graft outcome is noted for microvascular inflammation scores ≥2 and glomerular basement membrane splitting of >10% of the entire tuft in the most severely affected glomerulus. Together, these should form the basis for AMR-related endpoints in clinical trials of kidney transplantation, although modifications and restrictions to the Banff diagnostic definition of AMR are proposed for this purpose. The EMA provided recommendations based on this Broad Scientific Advice request in December 2020; further discussion, and consensus on the restricted definition of the AMR endpoint, is required.Copyright © 2022 Roufosse, Becker, Rabant, Seron, Bellini, Böhmig, Budde, Diekmann, Glotz, Hilbrands, Loupy, Oberbauer, Pengel, Schneeberger and Naesens

    Zoologie: Turbellarien

    No full text

    Infektion

    No full text

    Allgemeines

    No full text

    HLA-E–restricted immune responses are crucial for the control of EBV infections and the prevention of PTLD

    No full text
    Primary Epstein-Barr virus (EBV) infections may cause infectious mononucleosis (IM), whereas EBV reactivations in solid organ and hematopoietic stem cell transplant recipients are associated with posttransplantation lymphoproliferative disorders (PTLDs). It is still unclear why only a minority of primary EBV-infected individuals develop IM, and why only some patients progress to EBV+PTLD after transplantation. We now investigated whether nonclassic human leukocyte antigen E (HLA-E)–restricted immune responses have a significant impact on the development of EBV diseases in the individual host. On the basis of a large study cohort of 1404 patients and controls as well as on functional natural killer (NK) and CD8+ T-cell analyses, we could demonstrate that the highly expressed HLA-E∗0103/0103 genotype is protective against IM, due to the induction of potent EBV BZLF1-specific HLA-E–restricted CD8+ T-cell responses, which efficiently prevent the in vitro viral dissemination. Furthermore, we provide evidence that the risk of symptomatic EBV reactivations in immunocompetent individuals as well as in immunocompromised transplant recipients depends on variations in the inhibitory NKG2A/LMP-1/HLA-E axis. We show that EBV strains encoding for the specific LMP-1 peptide variants GGDPHLPTL or GGDPPLPTL, presented by HLA-E, elicit strong inhibitory NKG2A+ NK and CD8+ T-cell responses. The presence of EBV strains encoding for both peptides was highly associated with symptomatic EBV reactivations. The further progression to EBV+PTLD was highly associated with the presence of both peptide-encoding EBV strains and the expression of HLA-E∗0103/0103 in the host. Thus, HLA-E–restricted immune responses and the NKG2A/LMP-1/HLA-E axis are novel predictive markers for EBV+PTLD in transplant recipients and should be considered for future EBV vaccine design

    Alloimmune risk stratification for kidney transplant rejection

    Get PDF
    Different types of kidney transplantations are performed worldwide, including biologically diverse donor/recipient combinations, which entail distinct patient/graft outcomes. Thus, proper immunological and non-immunological risk stratification should be considered, especially for patients included in interventional randomized clinical trials. This paper was prepared by a working group within the European Society for Organ Transplantation, which submitted a Broad Scientific Advice request to the European Medicines Agency (EMA) relating to clinical trial endpoints in kidney transplantation. After collaborative interactions, the EMA sent its final response in December 2020, highlighting the following: 1) transplantations performed between human leukocyte antigen (HLA)-identical donors and recipients carry significantly lower immunological risk than those from HLA-mismatched donors; 2) for the same allogeneic molecular HLA mismatch load, kidney grafts from living donors carry significantly lower immunological risk because they are better preserved and therefore less immunogenic than grafts from deceased donors; 3) single-antigen bead testing is the gold standard to establish the repertoire of serological sensitization and is used to define the presence of a recipient’s circulating donor-specific antibodies (HLA-DSA); 4) molecular HLA mismatch analysis should help to further improve organ allocation compatibility and stratify immunological risk for primary alloimmune activation, but without consensus regarding which algorithm and cut-off to use it is difficult to integrate information into clinical practice/study design; 5) further clinical validation of other immune assays, such as those measuring anti-donor cellular memory (T/B cell ELISpot assays) and non–HLA-DSA, is needed; 6) routine clinical tests that reliably measure innate immune alloreactivity are lacking
    corecore