1,866 research outputs found

    Edge Critical Behaviour of the 2-Dimensional Tri-critical Ising Model

    Full text link
    Using previous results from boundary conformal field theory and integrability, a phase diagram is derived for the 2 dimensional Ising model at its bulk tri-critical point as a function of boundary magnetic field and boundary spin-coupling constant. A boundary tri-critical point separates phases where the spins on the boundary are ordered or disordered. In the latter range of coupling constant, there is a non-zero critical field where the magnetization is singular. In the former range, as the temperature is lowered, the boundary undergoes a first order transition while the bulk simultaneously undergoes a second order transition.Comment: 6 pages, RevTex, 3 postscript figure

    Critical phenomena and quantum phase transition in long range Heisenberg antiferromagnetic chains

    Full text link
    Antiferromagnetic Hamiltonians with short-range, non-frustrating interactions are well-known to exhibit long range magnetic order in dimensions, d2d\geq 2 but exhibit only quasi long range order, with power law decay of correlations, in d=1 (for half-integer spin). On the other hand, non-frustrating long range interactions can induce long range order in d=1. We study Hamiltonians in which the long range interactions have an adjustable amplitude lambda, as well as an adjustable power-law 1/xα1/|x|^\alpha, using a combination of quantum Monte Carlo and analytic methods: spin-wave, large-N non-linear sigma model, and renormalization group methods. We map out the phase diagram in the lambda-alpha plane and study the nature of the critical line separating the phases with long range and quasi long range order. We find that this corresponds to a novel line of critical points with continuously varying critical exponents and a dynamical exponent, z<1.Comment: 27 pages, 12 figures. RG flow added. Final version to appear in JSTA

    Neel order in doped quasi one-dimensional antiferromagnets

    Full text link
    We study the Neel temperature of quasi one-dimensional S=1/2 antiferromagnets containing non-magnetic impurities. We first consider the temperature dependence of the staggered susceptibility of finite chains with open boundary conditions, which shows an interesting difference for even and odd length chains. We then use a mean field theory treatment to incorporate the three dimensional inter-chain couplings. The resulting Neel temperature shows a pronounced drop as a function of doping by up to a factor of 5.Comment: 4 pages in revtex4 format including 2 epsf-embedded figures. The latest version in PDF format is available from http://fy.chalmers.se/~eggert/papers/staggered.pd

    Non-Fermi liquid behavior in Kondo models

    Full text link
    Despite the fact that the low energy behavior of the basic Kondo model cannot be studied perturbatively it was eventually shown by Wilson, Anderson, Nozieres and others to have a simple "local Fermi liquid theory" description. That is, electronic degrees of freedom become effectively non-interacting in the zero energy limit. However, generalized versions of the Kondo model involving more than one channel or impurity may exhibit low energy behavior of a less trivial sort which can, nonetheless, be solved exactly using either Bethe ansatz or conformal field theory and bosonization techniques. Now the low energy limit exhibits interacting many body behavior. For example, processes in which a single electron scatters off the impurity into a multi electron-hole state have a non-vanishing (and sometimes large) amplitude at zero energy. This corresponds to a rare solveable example of non-Fermi liquid behavior. Essential features of these phenomena are reviewed.Comment: A brief review submitted to the special issue of J. Phys. Soc. of Japan, "Kondo effect -- 40 years after the discovery

    Integrable versus Non-Integrable Spin Chain Impurity Models

    Full text link
    Recent renormalization group studies of impurities in spin-1/2 chains appear to be inconsistent with Bethe ansatz results for a special integrable model. We study this system in more detail around the integrable point in parameter space and argue that this integrable impurity model corresponds to a non-generic multi-critical point. Using previous results on impurities in half-integer spin chains, a consistent renormalization group flow and phase diagram is proposed.Comment: 20 pages 11 figures obtainable from authors, REVTEX 3.

    Logarithmic corrections to finite size spectrum of SU(N) symmetric quantum chains

    Full text link
    We consider SU(N) symmetric one dimensional quantum chains at finite temperature. For such systems the correlation lengths, ground state energy, and excited state energies are investigated in the framework of conformal field theory. The possibility of different types of excited states are discussed. Logarithmic corrections to the ground state energy and different types of excited states in the presence of a marginal opeartor, are calculated. Known results for SU(2) and SU(4) symmetric systems follow from our general formula.Comment: 5 pages, 1 figure; Typos corrected and minor changes made for clarit

    Solitonic excitations in the Haldane phase of a S=1 chain

    Full text link
    We study low-lying excitations in the 1D S=1S=1 antiferromagnetic valence-bond-solid (VBS) model. In a numerical calculation on finite systems the lowest excitations are found to form a discrete triplet branch, separated from the higher-lying continuum. The dispersion of these triplet excitations can be satisfactorily reproduced by assuming approximate wave functions. These wave functions are shown to correspond to moving hidden domain walls, i.e. to one-soliton excitations.Comment: RevTex 3.0, 24 pages, 2 figures on request by fax or mai

    Quantum Magnetic Impurities in Magnetically Ordered Systems

    Full text link
    We discuss the problem of a spin 1/2 impurity immersed in a spin S magnetically ordered background. We show that the problem maps onto a generalization of the dissipative two level system (DTLS) with two independent heat baths, associated with the Goldstone modes of the magnet, that couple to different components of the impurity spin operator. Using analytical perturbative renormalization group (RG) methods and accurate numerical renormalization group (NRG) we show that contrary to other dissipative models there is quantum frustration of decoherence and quasi-scaling even in the strong coupling regime. We make predictions for the behavior of the impurity magnetic susceptibility that can be measured in nuclear magnetic resonance (NMR) experiments. Our results may also have relevance to quantum computation.Comment: 4 pages, 3 figure

    Solution of two channel spin-flavor Kondo model

    Full text link
    We investigate a model where an impurity couples to both the spin and the flavor currents of the two channel conduction electrons. This model can be used as a prototype model of a magnetic impurity tunneling between two sites in a metal and of some heavy fermion systems where the ground state of the impurity has a fourfold degeneracy. The system is shown to flow to a doubly degenerate non fermi-liquid(NFL) fixed point; the thermodynamic quantities show NFL behaviors, but the transport quantities show fermi liquid (FL) behaviors . A spin-flavor coupling double tensor term is shown to drive the system to one of the two singlet FL fixed points. The relation with SU(4) Coqblin-Schrieffer model is studied. The implications on the possible experiments are given.Comment: 11 pages, REVTEX, no figures. To appear in Phys. Rev. B (Rapid Comm.) July 1, 199

    Abelian bosonization approach to quantum impurity problems

    Full text link
    Using Abelian Bosonization, we develop a simple and powerful method to calculate the correlation functions of the two channel Kondo model and its variants. The method can also be used to identify all the possible boundary fixed points and their maximum symmetry, to calculate straightforwardly the finite size spectra, to demonstrate the physical picture at the boundary explicitly. Comparisons with Non-Abelian Bosonization method are made. Some fixed points corresponding to 4 pieces of bulk fermions coupled to s=1/2 impurity are listed.Comment: 12 pages, REVTEX, 1 Table, no figures. To appear in Phys. Rev. Letts. July 21, 199
    corecore