32,048 research outputs found

    Adsorption of Self-Assembled Rigid Rods on Two-Dimensional Lattices

    Get PDF
    Monte Carlo (MC) simulations have been carried out to study the adsorption on square and triangular lattices of particles with two bonding sites that, by decreasing temperature or increasing density, polymerize reversibly into chains with a discrete number of allowed directions and, at the same time, undergo a continuous isotropic-nematic (IN) transition. The process has been monitored by following the behavior of the adsorption isotherms for different values of lateral interaction energy/temperature. The numerical data were compared with mean-field analytical predictions and exact functions for noninteracting and 1D systems. The obtained results revealed the existence of three adsorption regimes in temperature. (1) At high temperatures, above the critical one characterizing the IN transition at full coverage Tc(\theta=1), the particles are distributed at random on the surface and the adlayer behaves as a noninteracting 2D system. (2) At very low temperatures, the asymmetric monomers adsorb forming chains over almost the entire range of coverage, and the adsorption process behaves as a 1D problem. (3) In the intermediate regime, the system exhibits a mixed regime and the filling of the lattice proceeds according to two different processes. In the first stage, the monomers adsorb isotropically on the lattice until the IN transition occurs in the system and, from this point, particles adsorb forming chains so that the adlayer behaves as a 1D fluid. The two adsorption processes are present in the adsorption isotherms, and a marked singularity can be observed that separates both regimes. Thus, the adsorption isotherms appear as sensitive quantities with respect to the IN phase transition, allowing us (i) to reproduce the phase diagram of the system for square lattices and (ii) to obtain an accurate determination of the phase diagram for triangular lattices.Comment: Langmuir, 201

    Generating Black Strings in Higher Dimensions

    Full text link
    Starting with a Zipoy-Voorhees line element we construct and study the three parameter family of solutions describing a deformed black string with arbitrary tension.Comment: 11 pages, 2 figures, accepted for publication in J. Mod. Phys. Lett.

    Frictional Unemployment on Labor Flow Networks

    Full text link
    We develop an alternative theory to the aggregate matching function in which workers search for jobs through a network of firms: the labor flow network. The lack of an edge between two companies indicates the impossibility of labor flows between them due to high frictions. In equilibrium, firms' hiring behavior correlates through the network, generating highly disaggregated local unemployment. Hence, aggregation depends on the topology of the network in non-trivial ways. This theory provides new micro-foundations for the Beveridge curve, wage dispersion, and the employer-size premium. We apply our model to employer-employee matched records and find that network topologies with Pareto-distributed connections cause disproportionately large changes on aggregate unemployment under high labor supply elasticity

    Zero-field magnetization reversal of two-body Stoner particles with dipolar interaction

    Get PDF
    Nanomagnetism has recently attracted explosive attention, in particular, because of the enormous potential applications in information industry, e.g. new harddisk technology, race-track memory[1], and logic devices[2]. Recent technological advances[3] allow for the fabrication of single-domain magnetic nanoparticles (Stoner particles), whose magnetization dynamics have been extensively studied, both experimentally and theoretically, involving magnetic fields[4-9] and/or by spin-polarized currents[10-20]. From an industrial point of view, important issues include lowering the critical switching field HcH_c, and achieving short reversal times. Here we predict a new technological perspective: HcH_c can be dramatically lowered (including Hc=0H_c=0) by appropriately engineering the dipole-dipole interaction (DDI) in a system of two synchronized Stoner particles. Here, in a modified Stoner-Wohlfarth (SW) limit, both of the above goals can be achieved. The experimental feasibility of realizing our proposal is illustrated on the example of cobalt nanoparticles.Comment: 5 pages, 4 figure

    On the dynamics of a quadratic scalar field potential

    Full text link
    We review the attractor properties of the simplest chaotic model of inflation, in which a minimally coupled scalar field is endowed with a quadratic scalar potential. The equations of motion in a flat Friedmann-Robertson-Walker universe are written as an autonomous system of equations, and the solutions of physical interest appear as critical points. This new formalism is then applied to the study of inflation dynamics, in which we can go beyond the known slow-roll formalism of inflation.Comment: 14 pages, 6 eps figures, matches version to appear in IJMP
    corecore