3,081 research outputs found

    Time Dependence of Chemical Freeze-out in Relativistic Heavy Ion Collisions

    Get PDF
    We investigate chemical and thermal freeze-out time dependencies for strange particle production for CERN SPS heavy ion collisions in the framework of a dynamical hadronic transport code. We show that the Lambda yield changes considerably after hadronization in the case of Pb+Pb collisions, whereas for smaller system sizes (e.g. S+S) the direct particle production dominates over production from inelastic rescattering. Chemical freeze-out times for strange baryons in Pb+Pb are smaller than for non-strange baryons, but they are still sufficiently long for hadronic rescattering to contribute significantly to the final Lambda yield. Based on inelastic and elastic cross section estimates we expect the trend of shorter freeze-out times (chemical and kinetic), and thus less particle production after hadronization, to continue for multi-strange baryons.Comment: 10 pages, 7 postscript figure

    Dibaryons with Strangeness: their Weak Nonleptonic Decay using SU(3) Symmetry and how to find them in Relativistic Heavy-Ion Collisions

    Get PDF
    Weak SU(3) symmetry is successfully applied to the weak hadronic decay amplitudes of octet hyperons. Weak nonmesonic and mesonic decays of various dibaryons with strangeness, their dominant decay modes, and lifetimes are calculated. Production estimates for BNL's Relativistic Heavy-Ion Collider are presented employing wave function coalescence. Signals for detecting strange dibaryon states in heavy-ion collisions and revealing information about the unknown hyperon-hyperon interactions are outlined.Comment: 4 pages, 2 figures, uses RevTeX, discussion about the model of the weak decay and experimental signals extended, references update

    Energy dependence of kaon production in central Pb+Pb collisions

    Full text link
    Recent results from the NA49 experiment on the energy dependence of charged kaon production in central Pb+Pb collisions are presented. First results from the new data at 80 AGeV beam energy are compared with those from lower and higher energies. A difference in the energy dependence of the / and / ratios is observed. The / ratio shows a non-monotonic behaviour with a maximum near 40 AGeV.Comment: 8 pages, 7 figures, proceedings of talk at SQM2001, Frankfurt, Germany, to appear in J. Phys.

    Strangeness enhancements at central rapidity in 40 A GeV/c Pb-Pb collisions

    Full text link
    Results are presented on neutral kaon, hyperon and antihyperon production in Pb-Pb and p-Be interactions at 40 GeV/c per nucleon. The enhancement pattern follows the same hierarchy as seen in the higher energy data - the enhancement increases with the strangeness content of the hyperons and with the centrality of collision. The centrality dependence of the Pb-Pb yields and enhancements is steeper at 40 than at 158 A GeV/c. The energy dependence of strangeness enhancements at mid-rapidity is discussed.Comment: 15 pages, 10 figures and 3 tables. Presented at International Conference on Strangeness in Quark Matter (SQM2009), Buzios, Rio de Janeiro, Brazil, 27 Sept - 2 Oct 2009. Submitted to J.Phys.G: Nucl.Part.Phys, one reference adde

    The K/pi ratio from condensed Polyakov loops

    Get PDF
    We perform a field-theoretical computation of hadron production in large systems at the QCD confinement phase transition associated with restoration of the Z(3) global symmetry. This occurs from the decay of a condensate for the Polyakov loop. From the effective potential for the Polyakov loop, its mass just below the confinement temperature T_c is in between the vacuum masses of the pion and that of the kaon. Therefore, due to phase-space restrictions the number of produced kaons is roughly an order of magnitude smaller than that of produced pions, in agreement with recent results from collisions of gold ions at the BNL-RHIC. From its mass, we estimate that the Polyakov loop condensate is characterized by a (spatial) correlation scale of 1/m_\ell ~ 1/2 fm. For systems of deconfined matter of about that size, the free energy may not be dominated by a condensate for the Polyakov loop, and so the process of hadronization may be qualitatively different as compared to large systems. In that vein, experimental data on hadron abundance ratios, for example K/pi, in high-multiplicity pp events at high energies should be very interesting.Comment: 7 pages, 4 figures; discussion of the two-point function of Polyakov Loops in small versus large systems adde

    Resonances and fluctuations of strange particle in 200 GeV Au-Au collisions

    Get PDF
    We perform an analysis of preliminary data on strange particles yields and fluctuations within the Statistical hadronization model. We begin by describing the theoretical disagreements between different statistical models currently on the market. We then show how the simultaneous analysis of yields and fluctuations can be used to differentiate between the different models, and determine if one of them can be connected to underlying physics. We perform a study on a RHIC 200 GeV data sample that includes stable particles, resonances, and the event-by-event fluctuation of the K/πK/\pi ratio. We show that the equilibrium statistical model can not describe the fluctuation, unless an unrealistically small volume is assumed. Such small volume then makes it impossible to describe the total particle multiplicity. The non-equilibrium model,on the other hand, describes both the K/πK/\pi fluctuation and yields acceptably due to the extra boost to the π\pi fluctuation provided by the high pion chemical potential. Λ(1520)\Lambda(1520) and K∗K^* abundance is described within error bars, but the Σ∗\Sigma^* is under-predicted to ∌\sim 1.5 standard deviations. We suggest further measurements that have the potential to test the non-equilibrium model, as well as gauge the effect of re-interactions between hadronization and freeze-out.Comment: References added, equations corrected. As accepted for publication by Journal of Physics
    • 

    corecore