6,793 research outputs found

    Removing beam asymmetry bias in precision CMB temperature and polarisation experiments

    Full text link
    Asymmetric beams can create significant bias in estimates of the power spectra from CMB experiments. With the temperature power spectrum many orders of magnitude stronger than the B-mode power spectrum any systematic error that couples the two must be carefully controlled and/or removed. Here, we derive unbiased estimators for the CMB temperature and polarisation power spectra taking into account general beams and general scan strategies. A simple consequence of asymmetric beams is that, even with an ideal scan strategy where every sky pixel is seen at every orientation, there will be residual coupling from temperature power to B-mode power if the orientation of the beam asymmetry is not aligned with the orientation of the co-polarisation. We test our correction algorithm on simulations of two temperature-only experiments and demonstrate that it is unbiased. The simulated experiments use realistic scan strategies, noise levels and highly asymmetric beams. We also develop a map-making algorithm that is capable of removing beam asymmetry bias at the map level. We demonstrate its implementation using simulations and show that it is capable of accurately correcting both temperature and polarisation maps for all of the effects of beam asymmetry including the effects of temperature to polarisation leakage.Comment: 18 pages, 9 figure

    Removing beam asymmetry bias in precision CMB temperature and polarisation experiments

    Get PDF
    Asymmetric beams can create significant bias in estimates of the power spectra from CMB experiments. With the temperature power spectrum many orders of magnitude stronger than the B-mode power spectrum any systematic error that couples the two must be carefully controlled and/or removed. Here, we derive unbiased estimators for the CMB temperature and polarisation power spectra taking into account general beams and general scan strategies. A simple consequence of asymmetric beams is that, even with an ideal scan strategy where every sky pixel is seen at every orientation, there will be residual coupling from temperature power to B-mode power if the orientation of the beam asymmetry is not aligned with the orientation of the co-polarisation. We test our correction algorithm on simulations of two temperature-only experiments and demonstrate that it is unbiased. The simulated experiments use realistic scan strategies, noise levels and highly asymmetric beams. We also develop a map-making algorithm that is capable of removing beam asymmetry bias at the map level. We demonstrate its implementation using simulations and show that it is capable of accurately correcting both temperature and polarisation maps for all of the effects of beam asymmetry including the effects of temperature to polarisation leakage.Comment: 18 pages, 9 figure

    Minimal extended flavor groups, matter fields chiral representations, and the flavor question

    Get PDF
    We show the specific unusual features on chiral gauge anomalies cancellation in the minimal, necessarily 3-3-1, and the largest 3-4-1 weak isospin chiral gauge semisimple group leptoquark-bilepton extensions of the 3-2-1 conventional standard model of nuclear and electromagnetic interactions. In such models a natural explanation for the fundamental question of fermion generation replication arises from the self-consistency of a local gauge quantum field theory, which constrains the number of the QFD fermion families to the QCD color charges.Comment: 10 pages. <[email protected]

    Identification alone versus intraoperative neuromonitoring of the recurrent laryngeal nerve during thyroid surgery: experience of 2034 consecutive patients

    Get PDF
    Background: The aim of this study was to evaluate the ability of intraoperative neuromonitoring in reducing the postoperative recurrent laryngeal nerve palsy rate by a comparison between patients submitted to thyroidectomy with intraoperative neuromonitoring and with routine identification alone. Methods: Between June 2007 and December 2012, 2034 consecutive patients underwent thyroidectomy by a single surgical team. We compared patients who have had neuromonitoring and patients who have undergone surgery with nerve visualization alone. Patients in which neuromonitoring was not utilized (Group A) were 993, patients in which was utilized (group B) were 1041. Results: In group A 28 recurrent laryngeal nerve injuries were observed (2.82%), 21 (2.11%) transient and 7 (0.7%) permanent. In group B 23 recurrent laryngeal nerve injuries were observed (2.21%), in 17 cases (1.63%) transient and in 6 (0.58%) permanent. Differences were not statistically significative. Conclusions: Visual nerve identification remains the gold standard of recurrent laryngeal nerve management in thyroid surgery. Neuromonitoring helps to identify the nerve, in particular in difficult cases, but it did not decrease nerve injuries compared with visualization alone. Future studies are warranted to evaluate the benefit of intraoperative neuromonitoring in thyroidectomy, especially in conditions in which the recurrent nerve is at high risk of injury. Keywords: Neuromonitoring, Recurrent laryngeal nerve, Thyroidectom

    Renormalization Group and Grand Unification with 331 Models

    Full text link
    By making a renormalization group analysis we explore the possibility of having a 331 model as the only intermediate gauge group between the standard model and the scale of unification of the three coupling constants. We shall assume that there is no necessarily a group of grand unification at the scale of convergence of the couplings. With this scenario, different 331 models and their corresponding supersymmetric versions are considered, and we find the versions that allow the symmetry breaking described above. Besides, the allowed interval for the 331 symmetry breaking scale, and the behavior of the running coupling constants are obtained. It worths saying that some of the supersymmetric scenarios could be natural frameworks for split supersymmetry. Finally, we look for possible 331 models with a simple group at the grand unification scale, that could fit the symmetry breaking scheme described above.Comment: 18 pages. 3 figures. Some results reinterpreted, a new section and references added. Version to appear in International Journal of Modern Physics

    Variation in Reported Human Head Tissue Electrical Conductivity Values

    Get PDF
    Electromagnetic source characterisation requires accurate volume conductor models representing head geometry and the electrical conductivity field. Head tissue conductivity is often assumed from previous literature, however, despite extensive research, measurements are inconsistent. A meta-analysis of reported human head electrical conductivity values was therefore conducted to determine significant variation and subsequent influential factors. Of 3121 identified publications spanning three databases, 56 papers were included in data extraction. Conductivity values were categorised according to tissue type, and recorded alongside methodology, measurement condition, current frequency, tissue temperature, participant pathology and age. We found variation in electrical conductivity of the whole-skull, the spongiform layer of the skull, isotropic, perpendicularly- and parallelly-oriented white matter (WM) and the brain-to-skull-conductivity ratio (BSCR) could be significantly attributed to a combination of differences in methodology and demographics. This large variation should be acknowledged, and care should be taken when creating volume conductor models, ideally constructing them on an individual basis, rather than assuming them from the literature. When personalised models are unavailable, it is suggested weighted average means from the current meta-analysis are used. Assigning conductivity as: 0.41&nbsp;S/m for the scalp, 0.02&nbsp;S/m for the whole skull, or when better modelled as a three-layer skull 0.048&nbsp;S/m for the spongiform layer, 0.007&nbsp;S/m for the inner compact and 0.005&nbsp;S/m for the outer compact, as well as 1.71&nbsp;S/m for the CSF, 0.47&nbsp;S/m for the grey matter, 0.22&nbsp;S/m for WM and 50.4 for the BSCR
    • …
    corecore