17,065 research outputs found

    Momentum Distribution of Near-Zero-Energy Photoelectrons in the Strong-Field Tunneling Ionization in the Long Wavelength Limit

    Full text link
    We investigate the ionization dynamics of Argon atoms irradiated by an ultrashort intense laser of a wavelength up to 3100 nm, addressing the momentum distribution of the photoelectrons with near-zero-energy. We find a surprising accumulation in the momentum distribution corresponding to meV energy and a \textquotedblleft V"-like structure at the slightly larger transverse momenta. Semiclassical simulations indicate the crucial role of the Coulomb attraction between the escaping electron and the remaining ion at extremely large distance. Tracing back classical trajectories, we find the tunneling electrons born in a certain window of the field phase and transverse velocity are responsible for the striking accumulation. Our theoretical results are consistent with recent meV-resolved high-precision measurements.Comment: 5 pages, 4 figure

    Effectiveness of a community-based multifaceted fall-prevention intervention in active and independent older Chinese adults

    Get PDF
    This paper is freely available online under the BMJ Journals unlocked scheme, se

    KDM2B/FBXL10 targets c-Fos for ubiquitylation and degradation in response to mitogenic stimulation.

    Get PDF
    KDM2B (also known as FBXL10) controls stem cell self-renewal, somatic cell reprogramming and senescence, and tumorigenesis. KDM2B contains multiple functional domains, including a JmjC domain that catalyzes H3K36 demethylation and a CxxC zinc-finger that recognizes CpG islands and recruits the polycomb repressive complex 1. Here, we report that KDM2B, via its F-box domain, functions as a subunit of the CUL1-RING ubiquitin ligase (CRL1/SCF(KDM2B)) complex. KDM2B targets c-Fos for polyubiquitylation and regulates c-Fos protein levels. Unlike the phosphorylation of other SCF (SKP1-CUL1-F-box)/CRL1 substrates that promotes substrates binding to F-box, epidermal growth factor (EGF)-induced c-Fos S374 phosphorylation dissociates c-Fos from KDM2B and stabilizes c-Fos protein. Non-phosphorylatable and phosphomimetic mutations at S374 result in c-Fos protein which cannot be induced by EGF or accumulates constitutively and lead to decreased or increased cell proliferation, respectively. Multiple tumor-derived KDM2B mutations impaired the function of KDM2B to target c-Fos degradation and to suppress cell proliferation. These results reveal a novel function of KDM2B in the negative regulation of cell proliferation by assembling an E3 ligase to targeting c-Fos protein degradation that is antagonized by mitogenic stimulations

    Probing for cosmological parameters with LAMOST measurement

    Full text link
    In this paper we study the sensitivity of the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) project to the determination of cosmological parameters, employing the Monte Carlo Markov Chains (MCMC) method. For comparison, we first analyze the constraints on cosmological parameters from current observational data, including WMAP, SDSS and SN Ia. We then simulate the 3D matter power spectrum data expected from LAMOST, together with the simulated CMB data for PLANCK and the SN Ia from 5-year Supernovae Legacy Survey (SNLS). With the simulated data, we investigate the future improvement on cosmological parameter constraints, emphasizing the role of LAMOST. Our results show the potential of LAMOST in probing for the cosmological parameters, especially in constraining the equation-of-state (EoS) of the dark energy and the neutrino mass.Comment: 7 pages and 3 figures. Replaced with version accepted for publication in JCA

    Singular Effects of Spin-Flip Scattering on Gapped Dirac Fermions

    Full text link
    We investigate the effects of spin-flip scattering on the Hall transport and spectral properties of gapped Dirac fermions. We find that in the weak scattering regime, the Berry curvature distribution is dramatically compressed in the electronic energy spectrum, becoming singular at band edges. As a result the Hall conductivity has a sudden jump (or drop) of e2/2he^2/2h when the Fermi energy sweeps across the band edges, and otherwise is a constant quantized in units of e2/2he^2/2h. In parallel, spectral properties such as the density of states and spin polarization are also greatly enhanced at band edges. Possible experimental methods to detect these effects are discussed

    New forming method of manufacturing cylindrical parts with nano/ultrafine grained structures by power spinning based on small plastic strains

    Get PDF
    A new spinning method to manufacture the cylindrical parts with nano/ultrafine grained structures is proposed, which consists of quenching, power spinning and recrystallization annealing. The microstructural evolution during the different process stages and macroforming quality of the spun parts made of ASTM 1020 steel are investigated. The results show that the microstructures of the ferrites and pearlites in the ASTM 1020 steel are transformed to the lath martensites after quenching. The martensite laths obtained by quenching are refined to 87 nm and a small amount of nanoscale deformation twins with an average thickness of 20 nm is generated after performing a 3-pass stagger spinning with 55% thinning ratio of wall thickness, where the equivalent strain required is only 0.92. The equiaxial ferritic grains with an average size of 160 nm and nano-carbides are generated by subsequent recrystallization annealing at 480°C for 30 min. The spun parts with high dimensional precision and low surface roughness are obtained by the forming method developed in this work, combining quenching with 3-pass stagger spinning and recrystallization annealing
    corecore