8,574 research outputs found
A Transactional Analysis of Interaction Free Measurements
The transactional interpretation of quantum mechanics is applied to the
"interaction-free" measurement scenario of Elitzur and Vaidman and to the
Quantum Zeno Effect version of the measurement scenario by Kwiat, et al. It is
shown that the non-classical information provided by the measurement scheme is
supplied by the probing of the intervening object by incomplete offer and
confirmation waves that do not form complete transactions or lead to real
interactions.Comment: Accepted for publication in Foundations of Physics Letter
Entanglement genesis by ancilla-based parity measurement in 2D circuit QED
We present an indirect two-qubit parity meter in planar circuit quantum
electrodynamics, realized by discrete interaction with an ancilla and a
subsequent projective ancilla measurement with a dedicated, dispersively
coupled resonator. Quantum process tomography and successful entanglement by
measurement demonstrate that the meter is intrinsically quantum non-demolition.
Separate interaction and measurement steps allow commencing subsequent data
qubit operations in parallel with ancilla measurement, offering time savings
over continuous schemes.Comment: 5 pages, 4 figures; supplemental material with 5 figure
Partial-measurement back-action and non-classical weak values in a superconducting circuit
We realize indirect partial measurement of a transmon qubit in circuit
quantum electrodynamics by interaction with an ancilla qubit and projective
ancilla measurement with a dedicated readout resonator. Accurate control of the
interaction and ancilla measurement basis allows tailoring the measurement
strength and operator. The tradeoff between measurement strength and qubit
back-action is characterized through the distortion of a qubit Rabi oscillation
imposed by ancilla measurement in different bases. Combining partial and
projective qubit measurements, we provide the solid-state demonstration of the
correspondence between a non-classical weak value and the violation of a
Leggett-Garg inequality.Comment: 5 pages, 4 figures, and Supplementary Information (8 figures
Nucleosome-CHD4 chromatin remodeller structure maps human disease mutations
Chromatin remodelling plays important roles in gene regulation during development, differentiation and in disease. The chromatin remodelling enzyme CHD4 is a component of the NuRD and ChAHP complexes that are involved in gene repression. Here we report the cryo-electron microscopy (cryo-EM) structure of Homo sapiens CHD4 engaged with a nucleosome core particle in the presence of the non-hydrolysable ATP analogue AMP-PNP at an overall resolution of 3.1 Å. The ATPase motor of CHD4 binds and distorts nucleosomal DNA at superhelical location (SHL) +2, supporting the 'twist defect' model of chromatin remodelling. CHD4 does not induce unwrapping of terminal DNA, in contrast to its homologue Chd1, which functions in gene activation. Our structure also maps CHD4 mutations that are associated with human cancer or the intellectual disability disorder Sifrim-Hitz-Weiss syndrome
Parametric instabilities in magnetized multicomponent plasmas
This paper investigates the excitation of various natural modes in a
magnetized bi-ion or dusty plasma. The excitation is provided by parametrically
pumping the magnetic field. Here two ion-like species are allowed to be fully
mobile. This generalizes our previous work where the second heavy species was
taken to be stationary. Their collection of charge from the background neutral
plasma modifies the dispersion properties of the pump and excited waves. The
introduction of an extra mobile species adds extra modes to both these types of
waves. We firstly investigate the pump wave in detail, in the case where the
background magnetic field is perpendicular to the direction of propagation of
the pump wave. Then we derive the dispersion equation relating the pump to the
excited wave for modes propagating parallel to the background magnetic field.
It is found that there are a total of twelve resonant interactions allowed,
whose various growth rates are calculated and discussed.Comment: Published in May 2004; this is a late submission to the archive. 14
pages, 8 figure
Parametric instability in dark molecular clouds
The present work investigates the parametric instability of parallel
propagating circularly polarized Alfven(pump) waves in a weakly ionized
molecular cloud. It is shown that the relative drift between the plasma
particles gives rise to the Hall effect resulting in the modified pump wave
characteristics. Although the linearized fluid equations with periodic
coefficients are difficult to solve analytically, it is shown that a linear
transformation can remove the periodic dependence. The resulting linearized
equations with constant coefficients are used to derive an algebraic dispersion
relation. The growth rate of the parametric instability is a sensitive function
of the amplitude of the pump wave as well as to the ratio of the pump and the
modified dust-cyclotron frequencies. The instability is insensitive to the
plasma-beta The results are applied to the molecular clouds.Comment: 27 page, 5 figures, accepted in Ap
Polarity patterns of stress fibers
Stress fibers are contractile actomyosin bundles commonly observed in the
cytoskeleton of metazoan cells. The spatial profile of the polarity of actin
filaments inside contractile actomyosin bundles is either monotonic (graded) or
periodic (alternating). In the framework of linear irreversible thermodynamics,
we write the constitutive equations for a polar, active, elastic
one-dimensional medium. An analysis of the resulting equations for the dynamics
of polarity shows that the transition from graded to alternating polarity
patterns is a nonequilibrium Lifshitz point. Active contractility is a
necessary condition for the emergence of sarcomeric, alternating polarity
patterns.Comment: 5 pages, 3 figure
Geometrical Expression for the Angular Resolution of a Network of Gravitational-Wave Detectors
We report for the first time general geometrical expressions for the angular
resolution of an arbitrary network of interferometric gravitational-wave (GW)
detectors when the arrival-time of a GW is unknown. We show explicitly elements
that decide the angular resolution of a GW detector network. In particular, we
show the dependence of the angular resolution on areas formed by projections of
pairs of detectors and how they are weighted by sensitivities of individual
detectors. Numerical simulations are used to demonstrate the capabilities of
the current GW detector network. We confirm that the angular resolution is poor
along the plane formed by current LIGO-Virgo detectors. A factor of a few to
more than ten fold improvement of the angular resolution can be achieved if the
proposed new GW detectors LCGT or AIGO are added to the network. We also
discuss the implications of our results for the design of a GW detector
network, optimal localization methods for a given network, and electromagnetic
follow-up observations.Comment: 13 pages, for Phys. Rev.
Biased tomography schemes: an objective approach
We report on an intrinsic relationship between the maximum-likelihood
quantum-state estimation and the representation of the signal. A quantum
analogy of the transfer function determines the space where the reconstruction
should be done without the need for any ad hoc truncations of the Hilbert
space. An illustration of this method is provided by a simple yet practically
important tomography of an optical signal registered by realistic binary
detectors.Comment: 4 pages, 3 figures, accepted in PR
Treatment in the pediatric emergency department is evidence based: a retrospective analysis
BACKGROUND: Our goal was to quantify the evidence that is available to the physicians of a pediatric emergency department (PED) in making treatment decisions. Further, we wished to ascertain what percentage of evidence for treatment provided in the PED comes from pediatric studies. METHODS: We conducted a retrospective chart review of randomly selected patients seen in the PED between January 1 and December 31, 2002. The principal investigator identified a primary diagnosis and primary intervention for each chart. A thorough literature search was then undertaken with respect to the primary intervention. If a randomized control trial (RCT) or a systematic review was found, the intervention was classified as level I evidence. If no RCT was found, the intervention was assessed by an expert committee who determined its appropriateness based on face validity (RCTs were unanimously judged to be both unnecessary and, if a placebo would have been involved, unethical). These interventions were classified as level II evidence. Interventions that did not fall into either above category were classified as level III evidence. RESULTS: Two hundred and sixty-two patient charts were reviewed. Of these, 35.9% did not receive a primary intervention. Of the 168 interventions assessed, 80.4% were evidence-based (level I), 7.1% had face validity (level II) and 12.5% had no supporting evidence (level III). Of the evidence-based interventions, 83.7% were supported by studies with mostly pediatric patients. CONCLUSION: Our study demonstrates that a substantial proportion of PED treatment decisions are evidence-based, with most based on studies in pediatric patients. Also, a large number of patients seen in the PED receive no intervention
- …