2,619 research outputs found

    Competition between Electromagnetically Induced Transparency and Raman Processes

    Get PDF
    We present a theoretical formulation of competition among electromagnetically induced transparency (EIT) and Raman processes. The latter become important when the medium can no longer be considered to be dilute. Unlike the standard formulation of EIT, we consider all fields applied and generated as interacting with both the transitions of the Λ\Lambda scheme. We solve Maxwell equations for the net generated field using a fast-Fourier-transform technique and obtain predictions for the probe, control and Raman fields. We show how the intensity of the probe field is depleted at higher atomic number densities due to the build up of multiple Raman fields.Comment: 3.5 pages, 7 figure

    In-situ electrochemical fabrication of natural contacts on single nanowires

    Full text link
    We report a template-based in-situ electrochemical method for fabricating natural electric contacts on single nanowires using a pair of cross-patterned electrodes. Such electric contacts are highly stable upon thermal cycling between room temperature and milli-Kelvin temperatures. Direct imaging of the single-nanowire contacts using scanning electron microscopy is also demonstrated.Comment: 13 pages, 4 figure

    The role of intermolecular coupling in the photophysics of disordered organic semiconductors: Aggregate emission in regioregular polythiophene

    Full text link
    We address the role of excitonic coulping on the nature of photoexcitations in the conjugated polymer regioregular poly(3-hexylthiophene). By means of temperature-dependent absorption and photoluminescence spectroscopy, we show that optical emission is overwhelmingly dominated by weakly coupled H-aggregates. The relative absorbance of the 0-0 and 0-1 vibronic peaks provides a powerfully simple means to extract the magnitude of the intermolecular coupling energy, approximately 5 and 30 meV for films spun from isodurene and chloroform solutions respectively.Comment: 10 pages, 4 figures, published in Phys. Rev. Let

    Buried AGNs in Advanced Mergers:Mid-infrared color selection as a dual AGN finder

    Full text link
    A direct consequence of hierarchical galaxy formation is the existence of dual supermassive black holes (SMBHs), which may be preferentially triggered as active galactic nuclei (AGN) during galaxy mergers. Despite decades of searching, however, dual AGNs are extremely rare, and most have been discovered serendipitously. Using the all-sky WISE survey, we identified a population of over 100 morphologically identified interacting galaxies or mergers that display red mid-infrared colors often associated in extragalactic sources with powerful AGNs. The vast majority of these advanced mergers are optically classified as star-forming galaxies suggesting that they may represent an obscured population of AGNs that cannot be found through optical studies. In this work, we present Chandra/ACIS observations and near-infrared spectra with the Large Binocular Telescope of six advanced mergers with projected pair separations less than ~ 10 kpc. The combined X-ray, near-infrared, and mid-infrared properties of these mergers provide confirmation that four out of the six mergers host at least one AGN, with four of the mergers possibly hosting dual AGNs with projected separations less than ~10 kpc, despite showing no firm evidence for AGNs based on optical spectroscopic studies. Our results demonstrate that 1) optical studies miss a significant fraction of single and dual AGNs in advanced mergers, and 2) mid-infrared pre-selection is extremely effective in identifying dual AGN candidates in late-stage mergers. Our multi-wavelength observations suggest that the buried AGNs in these mergers are highly absorbed, with intrinsic column densities in excess of N_H >10^24cm^-2, consistent with hydrodynamic simulations.Comment: 23 pages, 11 figures, accepted for publication to Ap

    Evidence for Excimer Photoexcitations in an Ordered {\pi}-Conjugated Polymer Film

    Full text link
    We report pressure-dependent transient picosecond and continuous-wave photomodulation studies of disordered and ordered films of 2-methoxy-5-(2-ethylhexyloxy) poly(para-phenylenevinylene). Photoinduced absorption (PA) bands in the disordered film exhibit very weak pressure dependence and are assigned to intrachain excitons and polarons. In contrast, the ordered film exhibits two additional transient PA bands in the midinfrared that blueshift dramatically with pressure. Based on high-order configuration interaction calculations we ascribe the PA bands in the ordered film to excimers. Our work brings insight to the exciton binding energy in ordered films versus disordered films and solutions. The reduced exciton binding energy in ordered films is due to new energy states appearing below the continuum band threshold of the single strand.Comment: 5.5 pages, 5 figure

    Buried Black Hole Growth in IR-selected Mergers: New Results from Chandra

    Get PDF
    Observations and theoretical simulations suggest that a significant fraction of merger-triggered accretion onto supermassive black holes is highly obscured, particularly in late-stage galaxy mergers, when the black hole is expected to grow most rapidly. Starting with the Wide-Field Infrared Survey Explorer all-sky survey, we identified a population of galaxies whose morphologies suggest ongoing interaction and which exhibit red mid-infrared colors often associated with powerful active galactic nuclei (AGNs). In a follow-up to our pilot study, we now present Chandra/ACIS and XMM-Newton X-ray observations for the full sample of the brightest 15 IR-preselected mergers. All mergers reveal at least one nuclear X-ray source, with 8 out of 15 systems exhibiting dual nuclear X-ray sources, highly suggestive of single and dual AGNs. Combining these X-ray results with optical line ratios and with near-IR coronal emission line diagnostics, obtained with the near-IR spectrographs on the Large Binocular Telescope, we confirm that 13 out of the 15 mergers host AGNs, two of which host dual AGNs. Several of these AGNs are not detected in the optical. All X-ray sources appear X-ray weak relative to their mid-infrared continuum, and of the nine X-ray sources with sufficient counts for spectral analysis, eight reveal strong evidence of high absorption with column densities of NH≳1023N_\mathrm{H} \gtrsim 10^{23}~cm−2^{-2}. These observations demonstrate that a significant population of single and dual AGNs are missed by optical studies, due to high absorption, adding to the growing body of evidence that the epoch of peak black hole growth in mergers occurs in a highly obscured phase.Comment: 29 pages, 22 figures; (Main text: 17 pages, 4 figures

    Obscured AGNS in Bulgeless Hosts Discovered By Wise : The Case Study of Sdss J1224+5555

    Get PDF
    There is mounting evidence that supermassive black holes form and grow in bulgeless galaxies. However, a robust determination of the fraction of AGNs in bulgeless galaxies, an important constraint to models of supermassive black hole seed formation and merger-free models of AGN fueling, is unknown, since optical studies have been shown to be incomplete for low mass AGNs. In a recent study using the Wide-field Infrared Survey Explorer, we discovered hundreds of bulgeless galaxies that display mid-infrared signatures of extremely hot dust suggestive of powerful accreting massive black holes, despite having no signatures of black hole activity at optical wavelengths. Here we report X-ray follow-up observations of J122434.66+555522.3, a nearby (z=0.052) isolated bulgeless galaxy that contains an unresolved X-ray source detected at the 3 sigma level by XMM-Newton with an observed luminosity uncorrected for intrinsic absorption of L2-10~keV=1.1+/-0.4 1040 ergs s-1. Ground-based near-infrared spectroscopy with the Large Binocular Telescope together with multiwavelength observations from ultraviolet to millimeter wavelengths together suggest that J1224+5555 harbors a highly absorbed AGN with an intrinsic absorption of ~NH \u3e1024 cm-2. The hard X-ray luminosity of the putative AGN corrected for absorption is L2-10~keV~3x1042 ergs s-1, which, depending on the bolometric correction factor, corresponds to a bolometric luminosity of the AGN of 6x1043 ergs s-1 - 3x1044 erg s-1, and a lower mass limit for the black hole of MBH~2x106 Msun, based on the Eddington limit. While enhanced X-ray emission and hot dust can be produced by star formation in extremely low metallicity environments typical in dwarf galaxies, J1224+5555 has a stellar mass of ~2.0 x 1010 Msun and an above solar metallicity (12 + logO/H = 9.11), typical of our WISE-selected bulgeless galaxy sample. While collectively these observations suggest the presence of an AGN, we caution that identifying obscured AGNs in the low-luminosity regime is challenging and often requires multiwavelength observations. These observations suggest that low-luminosity AGNs can be heavily obscured and reside in optically quiescent galaxies, adding to the growing body of evidence that the fraction of bulgeless galaxies with accreting black holes may be significantly underestimated based on optical studies

    Partially-Time-Ordered Schwinger-Keldysh Loop Expansion of Coherent Nonlinear Optical Susceptibilities

    Full text link
    A compact correlation-function expansion is developed for nth order optical susceptibilities in the frequency domain using the Keldysh-Schwinger loop. By not keeping track of the relative time ordering of bra and ket interactions at the two branches of the loop, the resulting expressions contain only n+1 basic terms, compared to the 2n terms required for a fully time-ordered density matrix description. Superoperator Green's function expressions for the nth order suscpeptibility derived using both expansions reflect different types of interferences between pathways .These are demonstrated for correlation-induced resonances in four wave mixing signals.Comment: article: 19 pages (preprint style!; including figures) ``paper.tex'' figures:

    Not In Our Backyard: Spectroscopic Support for the CLASH z=11 Candidate MACS0647-JD

    Get PDF
    We report on our first set of spectroscopic Hubble Space Telescope observations of the z~11 candidate galaxy strongly lensed by the MACSJ0647.7+7015 galaxy cluster. The three lensed images are faint and we show that these early slitless grism observations are of sufficient depth to investigate whether this high-redshift candidate, identified by its strong photometric break at ~1.5 micron, could possibly be an emission line galaxy at a much lower redshift. While such an interloper would imply the existence of a rather peculiar object, we show here that such strong emission lines would clearly have been detected. Comparing realistic, two-dimensional simulations to these new observations we would expect the necessary emission lines to be detected at >5 sigma while we see no evidence for such lines in the dispersed data of any of the three lensed images. We therefore exclude that this object could be a low redshift emission line interloper, which significantly increases the likelihood of this candidate being a bona fide z~11 galaxy.Comment: 14 Pages. 6 Figures. 2nd revised version. Accepted. To appear in ApJ. Please contact [email protected] for comments on this pape
    • …
    corecore