3,319 research outputs found

    Turing's three philosophical lessons and the philosophy of information

    Get PDF
    In this article, I outline the three main philosophical lessons that we may learn from Turing's work, and how they lead to a new philosophy of information. After a brief introduction, I discuss his work on the method of levels of abstraction (LoA), and his insistence that questions could be meaningfully asked only by specifying the correct LoA. I then look at his second lesson, about the sort of philosophical questions that seem to be most pressing today. Finally, I focus on the third lesson, concerning the new philosophical anthropology that owes so much to Turing's work. I then show how the lessons are learned by the philosophy of information. In the conclusion, I draw a general synthesis of the points made, in view of the development of the philosophy of information itself as a continuation of Turing's work. This journal is © 2012 The Royal Society.Peer reviewe

    Epitaxial graphene on SiC(0001): More than just honeycombs

    Full text link
    The potential of graphene to impact the development of the next generation of electronics has renewed interest in its growth and structure. The graphitization of hexagonal SiC surfaces provides a viable alternative for the synthesis of graphene, with wafer-size epitaxial graphene on SiC(0001) now possible. Despite this recent progress, the exact nature of the graphene-SiC interface and whether the graphene even has a semiconducting gap remain controversial. Using scanning tunneling microscopy with functionalized tips and density functional theory calculations, here we show that the interface is a warped carbon sheet consisting of three-fold hexagon-pentagon-heptagon complexes periodically inserted into the honeycomb lattice. These defects relieve the strain between the graphene layer and the SiC substrate, while still retaining the three-fold coordination for each carbon atom. Moreover, these defects break the six-fold symmetry of the honeycomb, thereby naturally inducing a gap: the calculated band structure of the interface is semiconducting and there are two localized states near K below the Fermi level, explaining the photoemission and carbon core-level data. Nonlinear dispersion and a 33 meV gap are found at the Dirac point for the next layer of graphene, providing insights into the debate over the origin of the gap in epitaxial graphene on SiC(0001). These results indicate that the interface of the epitaxial graphene on SiC(0001) is more than a dead buffer layer, but actively impacts the physical and electronic properties of the subsequent graphene layers

    Effects of Patient-Directed Music Intervention on Anxiety and Sedative Exposure in Critically Ill Patients Receiving Mechanical Ventilatory Support: A Randomized Clinical Trial

    Get PDF
    Importance: Alternatives to sedative medications, such as music, may alleviate the anxiety associated with ventilatory support. Objective: To test whether listening to self-initiated patient-directed music (PDM) can reduce anxiety and sedative exposure during ventilatory support in critically ill patients. Design, Setting, and Patients: Randomized clinical trial that enrolled 373 patients from 12 intensive care units (ICUs) at 5 hospitals in the Minneapolis-St Paul, Minnesota, area receiving acute mechanical ventilatory support for respiratory failure between September 2006 and March 2011. Of the patients included in the study, 86% were white, 52% were female, and the mean (SD) age was 59 (14) years. The patients had a mean (SD) Acute Physiology, Age and Chronic Health Evaluation III score of 63 (21.6) and a mean (SD) of 5.7 (6.4) study days. Interventions: Self-initiated PDM (n = 126) with preferred selections tailored by a music therapist whenever desired while receiving ventilatory support, self-initiated use of noise-canceling headphones (NCH; n = 122), or usual care (n = 125). Main Outcomes and Measures: Daily assessments of anxiety (on 100-mm visual analog scale) and 2 aggregate measures of sedative exposure (intensity and frequency). Results: Patients in the PDM group listened to music for a mean (SD) of 79.8 (126) (median [range], 12 [0-796]) minutes/day. Patients in the NCH group wore the noise-abating headphones for a mean (SD) of 34.0 (89.6) (median [range], 0 [0-916]) minutes/day. The mixed-models analysis showed that at any time point, patients in the PDM group had an anxiety score that was 19.5 points lower (95% CI, −32.2 to −6.8) than patients in the usual care group (P = .003). By the fifth study day, anxiety was reduced by 36.5% in PDM patients. The treatment × time interaction showed that PDM significantly reduced both measures of sedative exposure. Compared with usual care, the PDM group had reduced sedation intensity by −0.18 (95% CI, −0.36 to −0.004) points/day (P = .05) and had reduced frequency by −0.21 (95% CI, −0.37 to −0.05) points/day (P = .01). The PDM group had reduced sedation frequency by −0.18 (95% CI, −0.36 to −0.004) points/day vs the NCH group (P = .04). By the fifth study day, the PDM patients received 2 fewer sedative doses (reduction of 38%) and had a reduction of 36% in sedation intensity. Conclusions and Relevance: Among ICU patients receiving acute ventilatory support for respiratory failure, PDM resulted in greater reduction in anxiety compared with usual care, but not compared with NCH. Concurrently, PDM resulted in greater reduction in sedation frequency compared with usual care or NCH, and greater reduction in sedation intensity compared with usual care, but not compared with NCH. Trial Registration: clinicaltrials.gov Identifier: NCT00440700 Critically ill mechanically ventilated patients receive intravenous sedative and analgesic medications to reduce anxiety and promote comfort and ventilator synchrony. These potent medications are often administered at high doses for prolonged periods and are associated with adverse effects such as bradycardia, hypotension, gut dysmotility, immobility, weakness, and delirium.1-3 Despite protocols and sedation assessment tools that guide clinicians, patients still experience significant levels of anxiety.4,5 Unrelieved anxiety and fear are not only unpleasant symptoms that clinicians want to palliate, but increased sympathetic nervous system activity can cause dyspnea and increased myocardial oxygen demand.6 Sustained anxiety and sympathetic nervous system activation can decrease the ability to concentrate, rest, or relax.6,7 Mechanically ventilated patients have little control over pharmacological interventions to relieve anxiety; dosing and frequency of sedative and analgesic medications are controlled by intensive care unit (ICU) clinicians. Interventions are needed that reduce anxiety, actively involve patients, and minimize the use of sedative medications. Nonpharmacological interventions such as relaxing music are effective in reducing anxiety while reducing medication administration.8,9 Music is a powerful distractor that can alter perceived levels of anxiety10 by occupying attention channels in the brain with meaningful, auditory stimuli11 rather than stressful environmental stimuli. Listening to preferred, relaxing music has reduced anxiety in mechanically ventilated patients in limited trials.12-15 It is not known if music can reduce anxiety throughout the course of ventilatory support, or reduce exposure to sedative medications. We evaluated if a patient-directed music (PDM) intervention could reduce anxiety and sedative exposure in ICU patients receiving mechanical ventilation

    2,2,3,3,5,5,6,6-Octa-p-tolyl-1,4-dioxa-2,3,5,6-tetra­germacyclo­hexane dichloro­methane disolvate

    Get PDF
    The title compound, C56H56Ge4O2·2CH2Cl2 or Tol8Ge4O2·2CH2Cl2 (Tol = p-CH3C6H4), was obtained serendipitously during the attempted synthesis of a branched oligogermane from Tol3GeNMe2 and PhGeH3. The mol­ecule contains an inversion center in the middle of the Ge4O2 ring which is in a chair conformation. The Ge—Ge bond distance is 2.4418 (5) Å and the Ge—O bond distances are 1.790 (2) and 1.785 (2) Å. The torsion angles within the Ge4O2 ring are −56.7 (1) and 56.1 (1)° for the Ge—Ge—O—Ge angles and −43.9 (1)° for the O—Ge—Ge—O angle

    Factors Influencing Nurse Sedation Practices with Mechanically Ventilated Patients: A U.S. National Survey

    Get PDF
    Objectives Mechanically ventilated patients commonly receive sedative medications. There is increasing evidence that sedative medications impact on patient outcomes. Nursing behaviour is a key determinant of sedation administration. The purpose of this study was to determine factors that influence nurse sedation administration to mechanically ventilated patients. Methods The Nurse Sedation Practices Scale was mailed to a random sample of 1250 members of the American Association of Critical Care Nurses. Results A response rate of 39% was obtained. Respondents were primarily staff nurses (73%) with a bachelor\u27s degree in nursing (59%) from various intensive care unit (ICU) settings. We limited the analysis to adult ICU practitioners (n = 423). The majority of nurses (81%) agreed that sedation is necessary for patient comfort. Nurse attitudes towards the efficacy of sedation for mechanically ventilated patients was positively correlated with nurses’ report of their sedation practice ( = .28, p \u3c .001) and their intent to administer sedation ( = .58, p \u3c .001). Attitudes did not vary with respect to individual or practice setting characteristics. Conclusion Nurses’ attitudes impact sedation administration practices. Modifying nurses’ attitudes on sedation and the experience of mechanical ventilation may be necessary to change sedation practices with mechanically ventilated patients

    Synthesis of novel bisphosphorylimides based on Staudinger reaction

    Get PDF
    A series of bisphosphorylimides based on the reaction sequence of Atherton-Todd and Staudinger reaction were synthesized. These bisphosphorylimides containing phosphorus in different chemical environments, while the reaction sequence is using mild conditions and moreover can be synthesized in an one-pot procedure. The molecular structures were revealed by nuclear magnetic resonance spectroscopy and x-ray crystallography. The stability of the bisphosphorylimides against hydrolysis and thermal influences was tested which allows an initial estimation about the usage as flame retardant

    Jahn-Teller stabilization of a "polar" metal oxide surface: Fe3O4(001)

    Get PDF
    Using ab initio thermodynamics we compile a phase diagram for the surface of Fe3O4(001) as a function of temperature and oxygen pressures. A hitherto ignored polar termination with octahedral iron and oxygen forming a wave-like structure along the [110]-direction is identified as the lowest energy configuration over a broad range of oxygen gas-phase conditions. This novel geometry is confirmed in a x-ray diffraction analysis. The stabilization of the Fe3O4(001)-surface goes together with dramatic changes in the electronic and magnetic properties, e.g., a halfmetal-to-metal transition.Comment: 4 pages, 4 figure

    Investigating timing properties of modern digitizers utilizing interpolating CFD algorithms and the application to digital fast-timing lifetime measurement

    Full text link
    The performance of two implementations of digital real-time interpolating constant fraction discriminator algorithms with respect to fast-timing lifetime measurements are investigated. The implementations integrated in two different digitizers were evaluated in terms of the effects of tuning parameters of the digital CFDs and the influence of different input amplitudes on the time resolution and time walk characteristics. Reference is made to the existing analog standard of fast-timing techniques. The study shows, that the timing performance of both modules is comparable to established fast-timing setups using analog constant fraction discriminators, but with the added benefit of digital processing. Both digitizer modules were found to be highly effective and user-friendly instruments for modern fast-timing requirements.Comment: 13 pages, 16 figure

    Magnetic and electronic structures of superconducting RuSr2_2GdCu2_2O8_8

    Full text link
    The coexistence of ferromagnetism and superconductivity in RuSr2_2GdCu2_2O8_8 was reported both from experiments (by Tallon et. al.) and first-principles calculations (by Pickett et. al.). Here we report that our first-principles full-potential linearized augmented plane wave (FLAPW) calculations, employing the precise crystal structure with structural distortions (i.e., RuO6_6 rotations) determined by neutron diffraction, demonstrate that antiferromagnetic ordering of the Ru moments is energetically favored over the previously proposed ferromagnetic ordering. Our results are consistent with recently performed magnetic neutron diffraction experiments (Lynn et. al). Ru t2gt_{2g} states, which are responsible for the magnetism, have only a very small interaction with Cu ege_g states, which results in a small exchange splitting of these states. The Fermi surface, characterized by strongly hybridized dpσdp\sigma orbitals, has nesting features similar to those in the two-dimensional high TcT_c cuprate superconductors.Comment: 6 pages,6 figures, accepted for publication in Phys. Rev.
    corecore