3,370 research outputs found

    Non-Minimal and Non-Universal Supersymmetry

    Get PDF
    I motivate and discuss non-minimal and non-universal models of supersymmetry and supergravity consistent with string unification at 101610^{16} GeV.Comment: 10 pages, Latex. Plenary talk given at 6th Workshop in High Energy Physics Phenomenology (WHEPP 6), Chennai (Madras), India, 3-15 Jan 200

    Top Quarks as a Window to String Resonances

    Full text link
    We study the discovery potential of string resonances decaying to ttˉt\bar{t} final state at the LHC. We point out that top quark pair production is a promising and an advantageous channel for studying such resonances, due to their low Standard Model background and unique kinematics. We study the invariant mass distribution and angular dependence of the top pair production cross section via exchanges of string resonances. The mass ratios of these resonances and the unusual angular distribution may help identify their fundamental properties and distinguish them from other new physics. We find that string resonances for a string scale below 4 TeV can be detected via the ttˉt\bar{t} channel, either from reconstructing the ttˉt\bar{t} semi-leptonic decay or recent techniques in identifying highly boosted tops.Comment: 22 pages, 6 figure

    Maximal Temperature in Flux Compactifications

    Full text link
    Thermal corrections have an important effect on moduli stabilization leading to the existence of a maximal temperature, beyond which the compact dimensions decompactify. In this note, we discuss generality of our earlier analysis and apply it to the case of flux compactifications. The maximal temperature is again found to be controlled by the supersymmetry breaking scale, T_{crit} \sim \sqrt{m_{3/2} M_P}.Comment: 10 pages, 10 figures. v2:comment and references adde

    Warped Vacuum Statistics

    Full text link
    We consider the effect of warping on the distribution of type IIB flux vacua constructed with Calabi-Yau orientifolds. We derive an analytical form of the distribution that incorporates warping and find close agreement with the results of a Monte Carlo enumeration of vacua. Compared with calculations that neglect warping, we find that for any finite volume compactification, the density of vacua is highly diluted in close proximity to the conifold point, with a steep drop-off within a critical distance.Comment: 30 pages, 2 figure

    Boundary Effective Field Theory and Trans-Planckian Perturbations: Astrophysical Implications

    Full text link
    We contrast two approaches to calculating trans-Planckian corrections to the inflationary perturbation spectrum: the New Physics Hypersurface [NPH] model, in which modes are normalized when their physical wavelength first exceeds a critical value, and the Boundary Effective Field Theory [BEFT] approach, where the initial conditions for all modes are set at the same time, and modified by higher dimensional operators enumerated via an effective field theory calculation. We show that these two approaches -- as currently implemented -- lead to radically different expectations for the trans-Planckian corrections to the CMB and emphasize that in the BEFT formalism we expect the perturbation spectrum to be dominated by quantum gravity corrections for all scales shorter than some critical value. Conversely, in the NPH case the quantum effects only dominate the longest modes that are typically much larger than the present horizon size. Furthermore, the onset of the breakdown in the standard inflationary perturbation calculation predicted by the BEFT formalism is likely to be associated with a feature in the perturbation spectrum, and we discuss the observational signatures of this feature in both CMB and large scale structure observations. Finally, we discuss possible modifications to both calculational frameworks that would resolve the contradictions identified here.Comment: Reworded commentary, reference added (v2) References added (v3

    D-Matter

    Full text link
    We study the properties and phenomenology of particle-like states originating from D-branes whose spatial dimensions are all compactified. They are non-perturbative states in string theory and we refer to them as D-matter. In contrast to other non-perturbative objects such as 't Hooft-Polyakov monopoles, D-matter states could have perturbative couplings among themselves and with ordinary matter. The lightest D-particle (LDP) could be stable because it is the lightest state carrying certain (integer or discrete) quantum numbers. Depending on the string scale, they could be cold dark matter candidates with properties similar to that of wimps or wimpzillas. The spectrum of excited states of D-matter exhibits an interesting pattern which could be distinguished from that of Kaluza-Klein modes, winding states, and string resonances. We speculate about possible signatures of D-matter from ultra-high energy cosmic rays and colliders.Comment: 25 pages, 5 figures, references adde

    Open String Wavefunctions in Warped Compactifications

    Full text link
    We analyze the wavefunctions for open strings in warped compactifications, and compute the warped Kahler potential for the light modes of a probe D-brane. This analysis not only applies to the dynamics of D-branes in warped backgrounds, but also allows to deduce warping corrections to the closed string Kahler metrics via their couplings to open strings. We consider in particular the spectrum of D7-branes in warped Calabi-Yau orientifolds, which provide a string theory realizations of the Randall-Sundrum scenario. We find that certain background fluxes, necessary in the presence of warping, couple to the fermionic wavefunctions and qualitatively change their behavior. This modified dependence of the wavefunctions are needed for consistency with supersymmetry, though it is present in non-supersymmetric vacua as well. We discuss the deviations of our setup from the RS scenario and, as an application of our results, compute the warping corrections to Yukawa couplings in a simple model. Our analysis is performed both with and without the presence of D-brane world-volume flux, as well as for the case of backgrounds with varying dilaton.Comment: 52 pages, refs. added, minor correction

    Brane Junctions in the Randall-Sundrum Scenario

    Get PDF
    We present static solutions to Einstein's equations corresponding to branes at various angles intersecting in a single 3-brane. Such configurations may be useful for building models with localized gravity via the Randall-Sundrum mechanism. We find that such solutions may exist only if the mechanical forces acting on the junction exactly cancel. In addition to this constraint there are further conditions that the parameters of the theory have to satisfy. We find that at least one of these involves only the brane tensions and cosmological constants, and thus can not have a dynamical origin. We present these conditions in detail for two simple examples. We discuss the nature of the cosmological constant problem in the framework of these scenarios, and outline the desired features of the brane configurations which may bring us closer towards the resolution of the cosmological constant problem.Comment: 15 pages, LaTeX. 4 postscript figures included. Typo corrected and reference adde
    • …
    corecore