2,085 research outputs found
Decoherence of Einstein-Podolsky-Rosen steering
We consider two systems A and B that share Einstein-Podolsky-Rosen (EPR)
steering correlations and study how these correlations will decay, when each of
the systems are independently coupled to a reservoir. EPR steering is a
directional form of entanglement, and the measure of steering can change
depending on whether the system A is steered by B, or vice versa. First, we
examine the decay of the steering correlations of the two-mode squeezed state.
We find that if the system B is coupled to a reservoir, then the decoherence of
the steering of A by B is particularly marked, to the extent that there is a
sudden death of steering after a finite time. We find a different directional
effect, if the reservoirs are thermally excited. Second, we study the
decoherence of the steering of a Schr\"odinger cat state, modeled as the
entangled state of a spin and harmonic oscillator, when the macroscopic system
(the cat) is coupled to a reservoir
A Global Estimate of the Number of Coral Reef Fishers
Abstract Overfishing threatens coral reefs worldwide, yet there is no reliable estimate on the number of reef fishers globally. We address this data gap by quantifying the number of reef fishers on a global scale, using two approaches -the first estimates reef fishers as a proportion of the total number of marine fishers in a country, based on the ratio of reef-related to total marine fish landed values. The second estimates reef fishers as a function of coral reef area, rural coastal population, and fishing pressure. In total, we find that there are 6 million reef fishers in 99 reef countries and territories worldwide, of which at least 25% are reef gleaners. Our estimates are an improvement over most existing fisher population statistics, which tend to omit accounting for gleaners and reef fishers. Our results suggest that slightly over a quarter of the world's small-scale fishers fish on coral reefs, and half of all coral reef fishers are in Southeast Asia. Coral reefs evidently support the socioeconomic well-being of numerous coastal communities. By quantifying the number of people who are employed as reef fishers, we provide decision-makers with an important input into planning for sustainable coral reef fisheries at the appropriate scale
Epigenetic Factors: Key Regulators Targeted in Cancers
Gene expression is tightly regulated via a myriad of mechanisms in the cell to allow canonical processes to occur. However, in the context of cancer, some of these mechanisms are dysregulated, and aberrant gene expression ensues. Some of the dysregulated mechanisms include changes to transcription factor activity, epigenetic marks (such as DNA methylation, histone modifications and chromatin state), or the stability of mRNA and protein. Disruption of these regulators would result changes in transcriptional landscape, affecting multiple pathways and eventually lead to continual cell proliferation and the formation of the tumor. Here, we discuss epigenetic factors that affect gene expression which are dysregulated in cancer, and summarize the therapeutic options available to target these factors
Activation of the HTLV-I Long Terminal Repeat by the Hepatitis B Virus X Protein
AbstractThe human T-cell leukemia virus type I (HTLV-I) Tax protein and the hepatitis B virus (HBV) X protein have each been shown to activate transcription of their respective viral promoters as well as a subset of cellular gene promoters. Here we show that the HTLV-I long terminal repeat (LTR) is responsive to HBV X transactivation. Maximum levels of X-mediated transactivation of the LTR were 8-fold. An X-responsive-region (XRR) of the LTR is located between nucleotides −355 and −276 and contains an AP-2 binding site, a previously recognized X-responsive element. We demonstrated that Tax and X synergize to activate transcription from the HTLV-I LTR, although the AP-2 binding site was not required for this synergy. These results raise the possibility that the HBV X protein may affect the level of HTLV-I gene expression in co-infected individuals
Mechanical signatures of microbial biofilms in micropillar-embedded growth chambers
Biofilms are surface-attached communities of microorganisms embedded in an extracellular matrix and are essential for the cycling of organic matter in natural and engineered environments. They are also the leading cause of many infections, for example, those associated with chronic wounds and implanted medical devices. The extracellular matrix is a key biofilm component that determines its architecture and defines its physical properties. Herein, we used growth chambers embedded with micropillars to study the net mechanical forces (differential pressure) exerted during biofilm formation in situ. Pressure from the biofilm is transferred to the micropillars via the extracellular matrix, and reduction of major matrix components decreases the magnitude of micropillar deflections. The spatial arrangement of micropillar deflections caused by pressure differences in the different biofilm strains may potentially be used as mechanical signatures for biofilm characterization. Hence, we submit that micropillar-embedded growth chambers provide insights into the mechanical properties and dynamics of the biofilm and its matrix.Singapore. National Research Foundation (Singapore-MIT Alliance for Research and Technology (SMART)
Discovering transcriptional modules by Bayesian data integration
Motivation: We present a method for directly inferring transcriptional modules (TMs) by integrating gene expression and transcription factor binding (ChIP-chip) data. Our model extends a hierarchical Dirichlet process mixture model to allow data fusion on a gene-by-gene basis. This encodes the intuition that co-expression and co-regulation are not necessarily equivalent and hence we do not expect all genes to group similarly in both datasets. In particular, it allows us to identify the subset of genes that share the same structure of transcriptional modules in both datasets.
Results: We find that by working on a gene-by-gene basis, our model is able to extract clusters with greater functional coherence than existing methods. By combining gene expression and transcription factor binding (ChIP-chip) data in this way, we are better able to determine the groups of genes that are most likely to represent underlying TMs
Overcoming data scarcity of Twitter: using tweets as bootstrap with application to autism-related topic content analysis
Notwithstanding recent work which has demonstrated the potential of using
Twitter messages for content-specific data mining and analysis, the depth of
such analysis is inherently limited by the scarcity of data imposed by the 140
character tweet limit. In this paper we describe a novel approach for targeted
knowledge exploration which uses tweet content analysis as a preliminary step.
This step is used to bootstrap more sophisticated data collection from directly
related but much richer content sources. In particular we demonstrate that
valuable information can be collected by following URLs included in tweets. We
automatically extract content from the corresponding web pages and treating
each web page as a document linked to the original tweet show how a temporal
topic model based on a hierarchical Dirichlet process can be used to track the
evolution of a complex topic structure of a Twitter community. Using
autism-related tweets we demonstrate that our method is capable of capturing a
much more meaningful picture of information exchange than user-chosen hashtags.Comment: IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining, 201
An immunotherapy survivor population: health-related quality of life and toxicity in patients with metastatic melanoma treated with immune checkpoint inhibitors
© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.Purpose The immune checkpoint inhibitors (ICIs) have resulted in subgroups of patients with metastatic melanoma achievinghigh-quality durable responses. Metastatic melanoma survivors are a new population in the era of cancer survivorship. The aimofthis study was to evaluate metastatic melanoma survivors in terms of health-related quality of life (HRQoL), immune-relatedadverse events (irAEs) and exposure to immunosuppressive agents in a large single centre in the UK.Methods We defined the survivor population as patients with a diagnosis of metastatic melanoma who achieved a durableresponse to an ICI and had been followed-up for a minimum of 12 months from initiation of ICI without disease progression.HRQoL was assessed using SF-36. Electronic health records were accessed to collect data on demographics, treatments, irAEsand survival. HRQoL data was compared with two norm-based datasets.Results Eighty-four metastatic melanoma survivors were eligible and 87% (N = 73) completed the SF-36. ICI-related toxicity ofany grade occurred in 92%of patients and 43%had experienced a grade 3 or 4 toxicity. Almost half (49%) of the patients requiredsteroids for the treatment of ICI-related toxicity, whilst 14% required treatment with an immunosuppressive agent beyondsteroids.Melanoma survivors had statistically significant lower HRQoL scores with regard to physical, social and physical rolefunctioning and general health compared with the normative population. There was a trend towards inferior scores in patientswith previous exposure to ipilimumab compared with those never exposed to ipilimumab.Conclusions Our results show that metastatic melanoma survivors have potentially experienced significant ICI-related toxicityand experience significant impairments in specific HRQoL domains. Future service planning is required to meet this population’sunique survivorship needs.Peer reviewe
- …