50,055 research outputs found
Robust Adaptive Control of a Class of Nonlinear Strict-feedback Discrete-time Systems with Exact Output Tracking
10.1016/j.automatica.2009.07.025Automatica45112537-2545ATCA
Cosmic Parallax in Ellipsoidal Universe
The detection of a time variation of the angle between two distant sources
would reveal an anisotropic expansion of the Universe. We study this effect of
"cosmic parallax" within the "ellipsoidal universe" model, namely a particular
homogeneous anisotropic cosmological model of Bianchi type I, whose attractive
feature is the potentiality to account for the observed lack of power of the
large-scale cosmic microwave background anisotropy. The preferred direction in
the sky, singled out by the axis of symmetry inherent to planar symmetry of
ellipsoidal universe, could in principle be constrained by future cosmic
parallax data. However, that will be a real possibility if and when the
experimental accuracy will be enhanced at least by two orders of magnitude.Comment: 9 pages, 2 figures, 1 table. Revised version to match published
version. References adde
Scalable numerical approach for the steady-state ab initio laser theory
We present an efficient and flexible method for solving the non-linear lasing
equations of the steady-state ab initio laser theory. Our strategy is to solve
the underlying system of partial differential equations directly, without the
need of setting up a parametrized basis of constant flux states. We validate
this approach in one-dimensional as well as in cylindrical systems, and
demonstrate its scalability to full-vector three-dimensional calculations in
photonic-crystal slabs. Our method paves the way for efficient and accurate
simulations of lasing structures which were previously inaccessible.Comment: 17 pages, 8 figure
Y(so(5)) symmtry of the nonlinear Schrdinger model with four-cmponents
The quantum nonlinear Schrdinger(NLS) model with four-component
fermions exhibits a symmetry when considered on an infintite
interval. The constructed generators of Yangian are proved to satisfy the
Drinfel'd formula and furthermore, the relation with the general form of
rational R-matrix given by Yang-Baxterization associated with algebraic
structure.Comment: 10 pages, no figure
CAPTCHaStar! A novel CAPTCHA based on interactive shape discovery
Over the last years, most websites on which users can register (e.g., email
providers and social networks) adopted CAPTCHAs (Completely Automated Public
Turing test to tell Computers and Humans Apart) as a countermeasure against
automated attacks. The battle of wits between designers and attackers of
CAPTCHAs led to current ones being annoying and hard to solve for users, while
still being vulnerable to automated attacks.
In this paper, we propose CAPTCHaStar, a new image-based CAPTCHA that relies
on user interaction. This novel CAPTCHA leverages the innate human ability to
recognize shapes in a confused environment. We assess the effectiveness of our
proposal for the two key aspects for CAPTCHAs, i.e., usability, and resiliency
to automated attacks. In particular, we evaluated the usability, carrying out a
thorough user study, and we tested the resiliency of our proposal against
several types of automated attacks: traditional ones; designed ad-hoc for our
proposal; and based on machine learning. Compared to the state of the art, our
proposal is more user friendly (e.g., only some 35% of the users prefer current
solutions, such as text-based CAPTCHAs) and more resilient to automated
attacks.Comment: 15 page
Modelling of plate heat exchangers and their associated CO2 trancritical power generation system
Globally, there is no shortage of low-grade waste and renewable heat sources that can be converted into electricity and useful heat using applicable thermodynamic power cycles and appropriate working fluids. As a natural working fluid, CO2 is a promising candidate for application in low-grade power generation systems but require optimised design and evaluation. Since CO2 working fluid has a low critical temperature (31.1⁰C) and high critical pressure (73.8 bar), a CO2 low-grade power generation system will most likely undergo supercritical Rankine (T-CO2) cycles. A T-CO2 system normally consists of a CO2 supercritical gas heater, expander, recuperator, condenser and liquid pump with the CO2 gas heater being a crucial component in determining system thermal and exergy efficiencies. In this paper, the models of a thermal oil-CO2 plate gas heater has been developed and validated with measurements of a 5kWe T-CO2 system test rig. The model is then integrated with other system component models to establish the system model. The system model can be used to evaluate and compare system performances at different operating conditions, including variable CO2 gas heater pressures and heat sink parameters, thereby optimising system operations.The authors would like to acknowledge the support received from GEA Searle and Research Councils UK (RCUK) for this research project
- …
