86,415 research outputs found
Efficient solutions of self-consistent mean field equations for dewetting and electrostatics in nonuniform liquids
We use a new configuration-based version of linear response theory to
efficiently solve self-consistent mean field equations relating an effective
single particle potential to the induced density. The versatility and accuracy
of the method is illustrated by applications to dewetting of a hard sphere
solute in a Lennard-Jones fluid, the interplay between local hydrogen bond
structure and electrostatics for water confined between two hydrophobic walls,
and to ion pairing in ionic solutions. Simulation time has been reduced by more
than an order of magnitude over previous methods.Comment: Supplementary material included at end of main pape
Fluctuations of the vacuum energy density of quantum fields in curved spacetime via generalized zeta functions
For quantum fields on a curved spacetime with an Euclidean section, we derive
a general expression for the stress energy tensor two-point function in terms
of the effective action. The renormalized two-point function is given in terms
of the second variation of the Mellin transform of the trace of the heat kernel
for the quantum fields. For systems for which a spectral decomposition of the
wave opearator is possible, we give an exact expression for this two-point
function. Explicit examples of the variance to the mean ratio of the vacuum energy density of a
massless scalar field are computed for the spatial topologies of and , with results of , and
respectively. The large variance signifies the importance
of quantum fluctuations and has important implications for the validity of
semiclassical gravity theories at sub-Planckian scales. The method presented
here can facilitate the calculation of stress-energy fluctuations for quantum
fields useful for the analysis of fluctuation effects and critical phenomena in
problems ranging from atom optics and mesoscopic physics to early universe and
black hole physics.Comment: Uses revte
Gluon GPDs and Exclusive Photoproduction of a Quarkonium in Forward Region
Forward photoproduction of can be used to extract Generalized Parton
Distributions(GPD's) of gluons. We analyze the process at twist-3 level and
study relevant classifications of twist-3 gluon GPD's. At leading power or
twist-2 level the produced is transversely polarized. We find that at
twist-3 the produced is longitudinally polarized. Our study shows that
in high energy limit the twist-3 amplitude is only suppressed by the inverse
power of the heavy quark mass relatively to the twist-2 amplitude. This
indicates that the power correction to the cross-section of unpolarized
can have a sizeable effect. We have also derived the amplitude of the
production of at twist-3, but the result contains end-point
singularities. The production of other quarkonia has been briefly discussed.Comment: Discussions of results are adde
Nonequilibrium Dynamics of Charged Particles in an Electromagnetic Field: Causal and Stable Dynamics from 1/c Expansion of QED
We derive from a microscopic Hamiltonian a set of stochastic equations of
motion for a system of spinless charged particles in an electromagnetic (EM)
field based on a consistent application of a dimensionful 1/c expansion of
quantum electrodynamics (QED). All relativistic corrections up to order 1/c^3
are captured by the dynamics, which includes electrostatic interactions
(Coulomb), magnetostatic backreaction (Biot-Savart), dissipative backreaction
(Abraham-Lorentz) and quantum field fluctuations at zero and finite
temperatures. With self-consistent backreaction of the EM field included we
show that this approach yields causal and runaway-free equations of motion,
provides new insights into charged particle backreaction, and naturally leads
to equations consistent with the (classical) Darwin Hamiltonian and has quantum
operator ordering consistent with the Breit Hamiltonian. To order 1/c^3 the
approach leads to a nonstandard mass renormalization which is associated with
magnetostatic self-interactions, and no cutoff is required to prevent runaways.
Our new results also show that the pathologies of the standard Abraham-Lorentz
equations can be seen as a consequence of applying an inconsistent (i.e.
incomplete, mixed-order) expansion in 1/c, if, from the start, the analysis is
viewed as generating a low-energy effective theory rather than an exact
solution. Finally, we show that the 1/c expansion within a Hamiltonian
framework yields well-behaved noise and dissipation, in addition to the
multiple-particle interactions.Comment: 17 pages, 2 figure
Mode decomposition and renormalization in semiclassical gravity
We compute the influence action for a system perturbatively coupled to a
linear scalar field acting as the environment. Subtleties related to
divergences that appear when summing over all the modes are made explicit and
clarified. Being closely connected with models used in the literature, we show
how to completely reconcile the results obtained in the context of stochastic
semiclassical gravity when using mode decomposition with those obtained by
other standard functional techniques.Comment: 4 pages, RevTeX, no figure
Stochastic Gross-Pitaevsky Equation for BEC via Coarse-Grained Effective Action
We sketch the major steps in a functional integral derivation of a new set of
Stochastic Gross-Pitaevsky equations (GPE) for a Bose-Einstein condensate (BEC)
confined to a trap at zero temperature with the averaged effects of
non-condensate modes incorporated as stochastic sources. The closed-time-path
(CTP) coarse-grained effective action (CGEA) or the equivalent influence
functional method is particularly suitable because it can account for the full
back-reaction of the noncondensate modes on the condensate dynamics
self-consistently. The Langevin equations derived here containing nonlocal
dissipation together with colored and multiplicative noises are useful for a
stochastic (as distinguished from say, a kinetic) description of the
nonequilibrium dynamics of a BEC. This short paper contains original research
results not yet published anywhere.Comment: 6 page
Longitudinal conductivity and transverse charge redistribution in coupled quantum wells subject to in-plane magnetic fields
In double quantum wells electrons experience a Lorentz force oriented
perpendicular to the structure plane when an electric current is driven
perpendicular to the direction of an in-plane magnetic field. Consequently, the
excess charge is accumulated in one of the wells. The polarization of a bilayer
electron system and the corresponding Hall voltage are shown to contribute
substantially to the in-plane conductivity.Comment: 3 pages, 2 figure
Effects of disorder on quantum fluctuations and superfluid density of a Bose-Einstein condensate in a two-dimensional optical lattice
We investigate a Bose-Einstein condensate trapped in a 2D optical lattice in
the presence of weak disorder within the framework of the Bogoliubov theory. In
particular, we analyze the combined effects of disorder and an optical lattice
on quantum fluctuations and superfluid density of the BEC system. Accordingly,
the analytical expressions of the ground state energy and quantum depletion of
the system are obtained. Our results show that the lattice still induces a
characteristic 3D to 1D crossover in the behavior of quantum fluctuations,
despite the presence of weak disorder. Furthermore, we use the linear response
theory to calculate the normal fluid density of the condensate induced by
disorder. Our results in the 3D regime show that the combined presence of
disorder and lattice induce a normal fluid density that asymptotically
approaches 4/3 of the corresponding condensate depletion. Conditions for
possible experimental realization of our scenario are also proposed.Comment: 8 pages, 0 figure. To appear in Physical Review
Nonequilibrium Phase Transitions of Vortex Matter in Three-Dimensional Layered Superconductors
Large-scale simulations on three-dimensional (3D) frustrated anisotropic XY
model have been performed to study the nonequilibrium phase transitions of
vortex matter in weak random pinning potential in layered superconductors. The
first-order phase transition from the moving Bragg glass to the moving smectic
is clarified, based on thermodynamic quantities. A washboard noise is observed
in the moving Bragg glass in 3D simulations for the first time. It is found
that the activation of the vortex loops play the dominant role in the dynamical
melting at high drive.Comment: 3 pages,5 figure
- …