8,255 research outputs found
Amino-terminal cysteine residues of RGS16 are required for palmitoylation and modulation of G(i)- and G(q)-mediated signaling
RGS proteins (Regulators of G protein Signaling) are a recently discovered family of proteins that accelerate the GTPase activity of heterotrimeric G protein α subunits of the i, q, and 12 classes. The proteins share a homologous core domain but have divergent amino-terminal sequences that are the site of palmitoylation for RGS-GAIP and RGS4. We investigated the function of palmitoylation for RGS16, which shares conserved amino-terminal cysteines with RGS4 and RGS5. Mutation of cysteine residues at residues 2 and 12 blocked the incorporation of [3H]palmitate into RGS16 in metabolic labeling studies of transfected cells or into purified RGS proteins in a cell-free palmitoylation assay. The purified RGS16 proteins with the cysteine mutations were still able to act as GTPase-activating protein for Giα. Inhibition or a decrease in palmitoylation did not significantly change the amount of protein that was membrane-associated. However, palmitoylation-defective RGS16 mutants demonstrated impaired ability to inhibit both Gi- and Gq-linked signaling pathways when expressed in HEK293T cells. These findings suggest that the amino-terminal region of RGS16 may affect the affinity of these proteins for Gα subunits in vivo or that palmitoylation localizes the RGS protein in close proximity to Gα subunits on cellular membranes
A Simple Passive Scalar Advection-Diffusion Model
This paper presents a simple, one-dimensional model of a randomly advected
passive scalar. The model exhibits anomalous inertial range scaling for the
structure functions constructed from scalar differences. The model provides a
simple computational test for recent ideas regarding closure and scaling for
randomly advected passive scalars. Results suggest that high order structure
function scaling depends on the largest velocity eddy size, and hence scaling
exponents may be geometry-dependent and non-universal.Comment: 30 pages, 11 figure
Passive Scalar: Scaling Exponents and Realizability
An isotropic passive scalar field advected by a rapidly-varying velocity
field is studied. The tail of the probability distribution for
the difference in across an inertial-range distance is found
to be Gaussian. Scaling exponents of moments of increase as
or faster at large order , if a mean dissipation conditioned on is
a nondecreasing function of . The computed numerically
under the so-called linear ansatz is found to be realizable. Some classes of
gentle modifications of the linear ansatz are not realizable.Comment: Substantially revised to conform with published version. Revtex (4
pages) with 2 postscript figures. Send email to [email protected]
Recommended from our members
Cas9+ conditionally-immortalized macrophages as a tool for bacterial pathogenesis and beyond.
Macrophages play critical roles in immunity, development, tissue repair, and cancer, but studies of their function have been hampered by poorly-differentiated tumor cell lines and genetically-intractable primary cells. Here we report a facile system for genome editing in non-transformed macrophages by differentiating ER-Hoxb8 myeloid progenitors from Cas9-expressing transgenic mice. These conditionally immortalized macrophages (CIMs) retain characteristics of primary macrophages derived from the bone marrow yet allow for easy genetic manipulation and a virtually unlimited supply of cells. We demonstrate the utility of this system for dissection of host genetics during intracellular bacterial infection using two important human pathogens: Listeria monocytogenes and Mycobacterium tuberculosis
Self-organising management of Grid environments
This paper presents basic concepts, architectural principles and algorithms for efficient resource and security management in cluster computing environments and the Grid. The work presented in this paper is funded by BTExacT and the EPSRC project SO-GRM (GR/S21939)
Wave Propagation in Gravitational Systems: Completeness of Quasinormal Modes
The dynamics of relativistic stars and black holes are often studied in terms
of the quasinormal modes (QNM's) of the Klein-Gordon (KG) equation with
different effective potentials . In this paper we present a systematic
study of the relation between the structure of the QNM's of the KG equation and
the form of . In particular, we determine the requirements on in
order for the QNM's to form complete sets, and discuss in what sense they form
complete sets. Among other implications, this study opens up the possibility of
using QNM expansions to analyse the behavior of waves in relativistic systems,
even for systems whose QNM's do {\it not} form a complete set. For such
systems, we show that a complete set of QNM's can often be obtained by
introducing an infinitesimal change in the effective potential
Using diffusion tensor imaging to identify corticospinal tract projection patterns in children with unilateral spastic cerebral palsy.
AIM: To determine whether diffusion tensor imaging (DTI) can be an independent assessment for identifying the corticospinal tract (CST) projecting from the more-affected motor cortex in children with unilateral spastic cerebral palsy (CP). METHOD: Twenty children with unilateral spastic CP participated in this study (16 males, four females; mean age 9y 2mo [standard deviation (SD) 3y 2mo], Manual Ability Classification System [MACS] level I-III). We used DTI tractography to reconstruct the CST projecting from the more-affected motor cortex. We mapped the motor representation of the more-affected hand by stimulating the more- and the less-affected motor cortex measured with single-pulse transcranial magnetic stimulation (TMS). We then verified the presence or absence of the contralateral CST by comparing the TMS map and DTI tractography. Fisher's exact test was used to determine the association between findings of TMS and DTI. RESULTS: DTI tractography successfully identified the CST controlling the more-affected hand (sensitivity=82%, specificity=78%). INTERPRETATION: Contralateral CST projecting from the lesioned motor cortex assessed by DTI is consistent with findings of TMS mapping. Since CST connectivity may be predictive of response to certain upper extremity treatments, DTI-identified CST connectivity may potentially be valuable for determining such connectivity where TMS is unavailable or inadvisable for children with seizures.K08 NS073796 - NINDS NIH HHS; TL1 RR024158 - NCRR NIH HHS; K01 NS062116 - NINDS NIH HHS; UL1 RR024156 - NCRR NIH HHS; KL2 RR024157 - NCRR NIH HHS; R01 HD076436 - NICHD NIH HHSPublished versio
High-Order Contamination in the Tail of Gravitational Collapse
It is well known that the late-time behaviour of gravitational collapse is
{\it dominated} by an inverse power-law decaying tail. We calculate {\it
higher-order corrections} to this power-law behaviour in a spherically
symmetric gravitational collapse. The dominant ``contamination'' is shown to
die off at late times as . This decay rate is much {\it
slower} than has been considered so far. It implies, for instance, that an
`exact' (numerical) determination of the power index to within
requires extremely long integration times of order . We show that the
leading order fingerprint of the black-hole electric {\it charge} is of order
.Comment: 12 pages, 2 figure
Real-time Loss Estimation for Instrumented Buildings
Motivation. A growing number of buildings have been instrumented to measure and record
earthquake motions and to transmit these records to seismic-network data centers to be archived and
disseminated for research purposes. At the same time, sensors are growing smaller, less expensive to
install, and capable of sensing and transmitting other environmental parameters in addition to
acceleration. Finally, recently developed performance-based earthquake engineering methodologies
employ structural-response information to estimate probabilistic repair costs, repair durations, and
other metrics of seismic performance. The opportunity presents itself therefore to combine these
developments into the capability to estimate automatically in near-real-time the probabilistic seismic
performance of an instrumented building, shortly after the cessation of strong motion. We refer to
this opportunity as (near-) real-time loss estimation (RTLE).
Methodology. This report presents a methodology for RTLE for instrumented buildings. Seismic
performance is to be measured in terms of probabilistic repair cost, precise location of likely physical
damage, operability, and life-safety. The methodology uses the instrument recordings and a Bayesian
state-estimation algorithm called a particle filter to estimate the probabilistic structural response of
the system, in terms of member forces and deformations. The structural response estimate is then
used as input to component fragility functions to estimate the probabilistic damage state of structural
and nonstructural components. The probabilistic damage state can be used to direct structural
engineers to likely locations of physical damage, even if they are concealed behind architectural
finishes. The damage state is used with construction cost-estimation principles to estimate
probabilistic repair cost. It is also used as input to a quantified, fuzzy-set version of the FEMA-356
performance-level descriptions to estimate probabilistic safety and operability levels.
CUREE demonstration building. The procedure for estimating damage locations, repair costs, and
post-earthquake safety and operability is illustrated in parallel demonstrations by CUREE and
Kajima research teams. The CUREE demonstration is performed using a real 1960s-era, 7-story, nonductile
reinforced-concrete moment-frame building located in Van Nuys, California. The building is
instrumented with 16 channels at five levels: ground level, floors 2, 3, 6, and the roof. We used the
records obtained after the 1994 Northridge earthquake to hindcast performance in that earthquake.
The building is analyzed in its condition prior to the 1994 Northridge Earthquake. It is found that,
while hindcasting of the overall system performance level was excellent, prediction of detailed damage
locations was poor, implying that either actual conditions differed substantially from those shown on
the structural drawings, or inappropriate fragility functions were employed, or both. We also found
that Bayesian updating of the structural model using observed structural response above the base of
the building adds little information to the performance prediction. The reason is probably that
Real-Time Loss Estimation for Instrumented Buildings
ii
structural uncertainties have only secondary effect on performance uncertainty, compared with the
uncertainty in assembly damageability as quantified by their fragility functions. The implication is
that real-time loss estimation is not sensitive to structural uncertainties (saving costly multiple
simulations of structural response), and that real-time loss estimation does not benefit significantly
from installing measuring instruments other than those at the base of the building.
Kajima demonstration building. The Kajima demonstration is performed using a real 1960s-era
office building in Kobe, Japan. The building, a 7-story reinforced-concrete shearwall building, was not
instrumented in the 1995 Kobe earthquake, so instrument recordings are simulated. The building is
analyzed in its condition prior to the earthquake. It is found that, while hindcasting of the overall
repair cost was excellent, prediction of detailed damage locations was poor, again implying either that
as-built conditions differ substantially from those shown on structural drawings, or that
inappropriate fragility functions were used, or both. We find that the parameters of the detailed
particle filter needed significant tuning, which would be impractical in actual application. Work is
needed to prescribe values of these parameters in general.
Opportunities for implementation and further research. Because much of the cost of applying
this RTLE algorithm results from the cost of instrumentation and the effort of setting up a structural
model, the readiest application would be to instrumented buildings whose structural models are
already available, and to apply the methodology to important facilities. It would be useful to study
under what conditions RTLE would be economically justified. Two other interesting possibilities for
further study are (1) to update performance using readily observable damage; and (2) to quantify the
value of information for expensive inspections, e.g., if one inspects a connection with a modeled 50%
failure probability and finds that the connect is undamaged, is it necessary to examine one with 10%
failure probability
- …
