37,407 research outputs found
The asymmetric structure of the Galactic halo
Using the stellar photometry catalogue based on the latest data release (DR4)
of the Sloan Digital Sky Survey (SDSS), a study of the Galactic structure using
star counts is carried out for selected areas of the sky. The sample areas are
selected along a circle at a Galactic latitude of +60, and 10 strips of
high Galactic latitude along different longitudes. Direct statistics of the
data show that the surface densities of from to
are systematically higher than those of from
to , defining a region of overdensity (in the direction of Virgo)
and another one of underdensity (in the direction of Ursa Major) with respect
to an axisymmetric model. It is shown by comparing the results from star counts
in the colour that the density deviations are due to an asymmetry of
the stellar density in the halo. Theoretical models for the surface density
profile are built and star counts are performed using a triaxial halo of which
the parameters are constrained by observational data. Two possible reasons for
the asymmetric structure are discussed.Comment: 17 pages, 7 figures, 5 tables, MNRAS accepte
Simple scheme for two-qubit Grover search in cavity QED
Following the proposal by F. Yamaguchi et al.[Phys. Rev. A 66, 010302 (R)
(2002)], we present an alternative way to implement the two-qubit Grover search
algorithm in cavity QED. Compared with F. Yamaguchi et al.'s proposal, with a
strong resonant classical field added, our method is insensitive to both the
cavity decay and thermal field, and doesn't require that the cavity remain in
the vacuum state throughout the procedure. Moreover, the qubit definitions are
the same for both atoms, which makes the experiment easier. The strictly
numerical simulation shows that our proposal is good enough to demonstrate a
two-qubit Grover's search with high fidelity.Comment: manuscript 10 pages, 2 figures, to appear in Phys. Rev.
New Consequences of Induced Transparency in a Double-Lambda scheme: Destructive Interference In Four-wave Mixing
We investigate a four-state system interacting with long and short laser
pulses in a weak probe beam approximation. We show that when all lasers are
tuned to the exact unperturbed resonances, part of the four-wave mixing (FWM)
field is strongly absorbed. The part which is not absorbed has the exact
intensity required to destructively interfere with the excitation pathway
involved in producing the FWM state. We show that with this three-photon
destructive interference, the conversion efficiency can still be as high as
25%. Contrary to common belief,our calculation shows that this process, where
an ideal one-photon electromagnetically induced transparency is established, is
not most suitable for high efficiency conversion. With appropriate
phase-matching and propagation distance, and when the three-photon destructive
interference does not occur, we show that the photon flux conversion efficiency
is independent of probe intensity and can be close to 100%. In addition, we
show clearly that the conversion efficiency is not determined by the maximum
atomic coherence between two lower excited states, as commonly believed. It is
the combination of phase-matching and constructive interference involving the
two terms arising in producing the mixing wave that is the key element for the
optimized FWM generation. Indeed, in this scheme no appreciable excited state
is produced, so that the atomic coherence between states |0> and |2> is always
very small.Comment: Submitted to Phys. Rev. A, 7 pages, 4 figure
Period halving of Persistent Currents in Mesoscopic Mobius ladders
We investigate the period halving of persistent currents(PCs) of
non-interacting electrons in isolated mesoscopic M\"{o}bius ladders without
disorder, pierced by Aharonov-Bhom flux. The mechanisms of the period halving
effect depend on the parity of the number of electrons as well as on the
interchain hopping. Although the data of PCs in mesoscopic systems are
sample-specific, some simple rules are found in the canonical ensemble average,
such as all the odd harmonics of the PCs disappear, and the signals of even
harmonics are non-negative. {PACS number(s): 73.23.Ra, 73.23.-b, 68.65.-k}Comment: 6 Pages with 3 EPS figure
Quantum phases of interacting phonons in ion traps
The vibrations of a chain of trapped ions can be considered, under suitable
experimental conditions, as an ensemble of interacting phonons, whose quantum
dynamics is governed by a Bose--Hubbard Hamiltonian. In this work we study the
quantum phases which appear in this system, and show that thermodynamical
properties, such as critical parameters and critical exponents, can be measured
in experiments with a limited number of ions. Besides that, interacting phonons
in trapped ions offer us the possibility to access regimes which are difficult
to study with ultracold bosons in optical lattices, like models with attractive
or site--dependent phonon-phonon interactions.Comment: 10 page
Superluminal propagation of an optical pulse in a Doppler broadened three-state, single channel active Raman gain medium
Using a single channel active Raman gain medium we show a ns
advance time for an optical pulse of s propagating
through a 10 cm medium, a lead time that is comparable to what was reported
previously. In addition, we have verified experimentally all the features
associated with this single channel Raman gain system. Our results show that
the reported gain-assisted superluminal propagation should not be attributed to
the interference between the two frequencies of the pump field.Comment: 4 pages, 3 figure
Alternative scheme for two-qubit conditional phase gate by adiabatic passage under dissipation
We check a recent proposal [H. Goto and K. Ichimura Phys. Rev. A 70, 012305
(2004)] for controlled phase gate through adiabatic passage under the influence
of spontaneous emission and the cavity decay. We show a modification of above
proposal could be used to generate the necessary conditional phase gates in the
two-qubit Grover search. Conditioned on no photon leakage either from the
atomic excited state or from the cavity mode during the gating period, we
numerically analyze the success probability and the fidelity of the two-qubit
conditional phase gate by adiabatic passage. The comparison made between our
proposed gating scheme and a previous one shows that Goto and Ichimura's scheme
is an alternative and feasible way in the optical cavity regime for two-qubit
gates and could be generalised in principle to multi-qubit gates.Comment: to appear in J. Phys.
Generation of N-qubit W state with rf-SQUID qubits by adiabatic passage
A simple scheme is presented to generate n-qubit W state with
rf-superconducting quantum interference devices (rf-SQUIDs) in cavity QED
through adiabatic passage. Because of the achievable strong coupling for
rf-SQUID qubits embedded in cavity QED, we can get the desired state with high
success probability. Furthermore, the scheme is insensitive to position
inaccuracy of the rf-SQUIDs. The numerical simulation shows that, by using
present experimental techniques, we can achieve our scheme with very high
success probability, and the fidelity could be eventually unity with the help
of dissipation.Comment: to appear in Phys. Rev.
- …