6,588 research outputs found

    Novel vortex structures in dipolar condensates

    Full text link
    We investigate the properties of single vortices and of vortex lattice in a rotating dipolar condensate. We show that vortices in this system possess many novel features induced by the long-range anisotropic dipolar interaction between particles. For example, when the dipoles are polarized along the rotation axis, vortices may display a crater-like structure; when dipoles are polarized orthogonal to the rotation axis, vortex cores takes an elliptical shape and the vortex lattice no longer possesses hexagonal symmetry.Comment: 4 pages, 5 figure

    Making vortices in dipolar spinor condensates via rapid adiabatic passage

    Full text link
    We propose to the create vortices in spin-1 condensates via magnetic dipole-dipole interaction. Starting with a polarized condensate prepared under large axial magnetic field, we show that by gradually inverting the field, population transfer among different spin states can be realized in a controlled manner. Under optimal condition, we generate a doubly quantized vortex state containing nearly all atoms in the condensate. The resulting vortex state is a direct manifestation of the dipole-dipole interaction and spin textures in spinor condensates. We also point out that the whole process can be qualitatively described by a simple rapid adiabatic passage model.Comment: 4 pages, 4 figure

    Dynamical properties of dipolar Fermi gases

    Full text link
    We investigate dynamical properties of a one-component Fermi gas with dipole-dipole interaction between particles. Using a variational function based on the Thomas-Fermi density distribution in phase space representation, the total energy is described by a function of deformation parameters in both real and momentum space. Various thermodynamic quantities of a uniform dipolar Fermi gas are derived, and then instability of this system is discussed. For a trapped dipolar Fermi gas, the collective oscillation frequencies are derived with the energy-weighted sum rule method. The frequencies for the monopole and quadrupole modes are calculated, and softening against collapse is shown as the dipolar strength approaches the critical value. Finally, we investigate the effects of the dipolar interaction on the expansion dynamics of the Fermi gas and show how the dipolar effects manifest in an expanded cloud.Comment: 14 pages, 8 figures, submitted to New J. Phy

    Does stability of relativistic dissipative fluid dynamics imply causality?

    Full text link
    We investigate the causality and stability of relativistic dissipative fluid dynamics in the absence of conserved charges. We perform a linear stability analysis in the rest frame of the fluid and find that the equations of relativistic dissipative fluid dynamics are always stable. We then perform a linear stability analysis in a Lorentz-boosted frame. Provided that the ratio of the relaxation time for the shear stress tensor, τπ\tau_\pi, to the sound attenuation length, Γs=4η/3(ε+P)\Gamma_s = 4\eta/3(\varepsilon+P), fulfills a certain asymptotic causality condition, the equations of motion give rise to stable solutions. Although the group velocity associated with perturbations may exceed the velocity of light in a certain finite range of wavenumbers, we demonstrate that this does not violate causality, as long as the asymptotic causality condition is fulfilled. Finally, we compute the characteristic velocities and show that they remain below the velocity of light if the ratio τπ/Γs\tau_\pi/\Gamma_s fulfills the asymptotic causality condition.Comment: 30 pages, 10 figures

    On the single mode approximation in spinor-1 atomic condensate

    Full text link
    We investigate the validity conditions of the single mode approximation (SMA) in spinor-1 atomic condensate when effects due to residual magnetic fields are negligible. For atomic interactions of the ferromagnetic type, the SMA is shown to be exact, with a mode function different from what is commonly used. However, the quantitative deviation is small under current experimental conditions (for 87^{87}Rb atoms). For anti-ferromagnetic interactions, we find that the SMA becomes invalid in general. The differences among the mean field mode functions for the three spin components are shown to depend strongly on the system magnetization. Our results can be important for studies of beyond mean field quantum correlations, such as fragmentation, spin squeezing, and multi-partite entanglement.Comment: Revised, newly found analytic proof adde

    Coherent population trapping and dynamical instability in the nonlinearly coupled atom-molecule system

    Full text link
    We study the possibility of creating a coherent population trapping (CPT) state, involving free atomic and ground molecular condensates, during the process of associating atomic condensate into molecular condensate. We generalize the Bogoliubov approach to this multi-component system and study the collective excitations of the CPT state in the homogeneous limit. We develop a set of analytical criteria based on the relationship among collisions involving atoms and ground molecules, which are found to strongly affect the stability properties of the CPT state, and use it to find the stability diagram and to systematically classify various instabilities in the long-wavelength limit.Comment: 11 pages, 8 figure

    An Integrated Network Representation Of Multiple Cancer-Specific Data For Graph-Based Machine Learning

    Get PDF
    Genomic profiles of cancer cells provide valuable information on genetic alterations in cancer. Several recent studies employed these data to predict the response of cancer cell lines to drug treatment. Nonetheless, due to the multifactorial phenotypes and intricate mechanisms of cancer, the accurate prediction of the effect of pharmacotherapy on a specific cell line based on the genetic information alone is problematic. Emphasizing on the system-level complexity of cancer, we devised a procedure to integrate multiple heterogeneous data, including biological networks, genomics, inhibitor profiling, and gene-disease associations, into a unified graph structure. In order to construct compact, yet information-rich cancer-specific networks, we developed a novel graph reduction algorithm. Driven by not only the topological information, but also the biological knowledge, the graph reduction increases the feature-only entropy while preserving the valuable graph-feature information. Subsequent comparative benchmarking simulations employing a tissue level cross-validation protocol demonstrate that the accuracy of a graph-based predictor of the drug efficacy is 0.68, which is notably higher than those measured for more traditional, matrix-based techniques on the same data. Overall, the non-Euclidean representation of the cancer-specific data improves the performance of machine learning to predict the response of cancer to pharmacotherapy. The generated data are freely available to the academic community at https:/osf.io/dzx7b/

    Excitation spectrum and instability of a two-species Bose-Einstein condensate

    Full text link
    We numerically calculate the density profile and excitation spectrum of a two-species Bose-Einstein condensate for the parameters of recent experiments. We find that the ground state density profile of this system becomes unstable in certain parameter regimes, which leads to a phase transition to a new stable state. This state displays spontaneously broken cylindrical symmetry. This behavior is reflected in the excitation spectrum: as we approach the phase transition point, the lowest excitation frequency goes to zero, indicating the onset of instability in the density profile. Following the phase transition, this frequency rises again.Comment: 8 pages, 5 figures, uses REVTe

    Optical waveform sampling of a 320 Gbits/s serial data signal using a hydrogenated amorphous silicon waveguide

    Get PDF
    We propose using a hydrogenated amorphous silicon waveguide for ultra-high-speed serial data waveform sampling. 320 Gbit/s serial optical data sampling is experimentally demonstrated with +12 dB intrinsic four wave mixing conversion efficiency
    • …
    corecore