493 research outputs found

    Ansatz from Non-Linear Optics Applied to Trapped Bose-Einstein Condensates

    Get PDF
    A simple analytical ansatz, which has been used to describe the intensity profile of the similariton laser (a laser with self-similar propagation of ultrashort pulses), is used as a variational wave function to solve the Gross-Pitaevskii equation for a wide range of interaction parameters. The variational form interpolates between the noninteracting density profile and the strongly interacting Thomas-Fermi profile smoothly. The simple form of the ansatz is modified for both cylindrically symmetric and completely anisotropic harmonic traps. The resulting ground-state density profile and energy are in very good agreement with both the analytical solutions in the limiting cases of interaction and the numerical solutions in the intermediate regime.Comment: 4 pages, 3 figures, published versio

    Superfluid-Insulator transition of ultracold atoms in an optical lattice in the presence of a synthetic magnetic field

    Get PDF
    We study the Mott insulator-superfluid transition of ultracold bosonic atoms in a two-dimensional square optical lattice in the presence of a synthetic magnetic field with p/q (p and q being co-prime integers) flux quanta passing through each lattice plaquette. We show that on approach to the transition from the Mott side, the momentum distribution of the bosons exhibits q precursor peaks within the first magnetic Brillouin zone. We also provide an effective theory for the transition and show that it involves q interacting boson fields. We construct, from a mean-field analysis of this effective theory, the superfluid ground states near the transition and compute, for q=2,3, both the gapped and the gapless collective modes of these states. We suggest experiments to test our theory.Comment: 4 pages, 4 figs; v

    Betatron emission as a diagnostic for injection and acceleration mechanisms in laser-plasma accelerators

    Full text link
    Betatron x-ray emission in laser-plasma accelerators is a promising compact source that may be an alternative to conventional x-ray sources, based on large scale machines. In addition to its potential as a source, precise measurements of betatron emission can reveal crucial information about relativistic laser-plasma interaction. We show that the emission length and the position of the x-ray emission can be obtained by placing an aperture mask close to the source, and by measuring the beam profile of the betatron x-ray radiation far from the aperture mask. The position of the x-ray emission gives information on plasma wave breaking and hence on the laser non-linear propagation. Moreover, the measurement of the longitudinal extension helps one to determine whether the acceleration is limited by pump depletion or dephasing effects. In the case of multiple injections, it is used to retrieve unambiguously the position in the plasma of each injection. This technique is also used to study how, in a capillary discharge, the variations of the delay between the discharge and the laser pulse affect the interaction. The study reveals that, for a delay appropriate for laser guiding, the x-ray emission only occurs in the second half of the capillary: no electrons are injected and accelerated in the first half.Comment: 8 pages, 6 figures. arXiv admin note: text overlap with arXiv:1104.245

    Stability of rotating states in a weakly-interacting Bose-Einstein condensate

    Full text link
    We investigate the lowest state of a rotating, weakly-interacting Bose-Einstein condensate trapped in a harmonic confining potential that is driven by an infinitesimally asymmetric perturbation. Although in an axially-symmetric confining potential the gas has an axially-symmetric single-particle density distribution, we show that in the presence of the small asymmetric perturbation its lowest state is the one given by the mean-field approximation, which is a broken-symmetric state. We also estimate the rate of relaxation of angular momentum when the gas is no longer driven by the asymmetric perturbation and identify two regimes of "slow" and "fast" relaxation. States of certain symmetry are found to be more robust.Comment: 6 pages, RevTe

    Phase diagram of quantized vortices in a trapped Bose-Einstein condensed gas

    Full text link
    We investigate the thermodynamic stability of quantized vortices in a dilute Bose gas confined by a rotating harmonic trap at finite temperature. Interatomic forces play a crucial role in characterizing the resulting phase diagram, especially in the large NN Thomas-Fermi regime. We show that the critical temperature for the creation of stable vortices exhibits a maximum as a function of the frequency of the rotating trap and that the corresponding transition is associated with a discontinuity in the number of atoms in the condensate. Possible strategies for approaching the vortical region are discussed.Comment: Revtex, 4 pages, 2 figure

    Mapping the X-Ray Emission Region in a Laser-Plasma Accelerator

    Full text link
    The x-ray emission in laser-plasma accelerators can be a powerful tool to understand the physics of relativistic laser-plasma interaction. It is shown here that the mapping of betatron x-ray radiation can be obtained from the x-ray beam profile when an aperture mask is positioned just beyond the end of the emission region. The influence of the plasma density on the position and the longitudinal profile of the x-ray emission is investigated and compared to particle-in-cell simulations. The measurement of the x-ray emission position and length provides insight on the dynamics of the interaction, including the electron self-injection region, possible multiple injection, and the role of the electron beam driven wakefield.Comment: 5 pages, 4 figure

    Exact solutions for interacting boson systems under rotation

    Full text link
    We study a class of interacting, harmonically trapped boson systems at angular momentum L. The Hamiltonian leaves a L-dimensional subspace invariant, and this permits an explicit solution of several eigenstates and energies for a wide class of two-body interactionsComment: 8 pages, error corrected (concerns generalization of subspace structure

    Quantized circular motion of a trapped Bose-Einstein condensate: coherent rotation and vortices

    Full text link
    We study the creation of vortex states in a trapped Bose-Einstein condensate by a rotating force. For a harmonic trapping potential the rotating force induces only a circular motion of the whole condensate around the trap center which does not depend on the interatomic interaction. For the creation of a pure vortex state it is necessary to confine the atoms in an anharmonic trapping potential. The efficiency of the creation can be greatly enhanced by a sinusodial variation of the force's angular velocity. We present analytical and numerical calculations for the case of a quartic trapping potential. The physical mechanism behind the requirement of an anharmonic trapping potential for the creation of pure vortex states is explained. [Changes: new numerical and analytical results are added and the representation is improved.]Comment: 13 Pages, 5 Figures, RevTe

    Perfectionism and achievement goals in young Finnish ice-hockey players aspiring to make the Under-16 national team

    Get PDF
    Research on perfectionism suggests that is it useful to differentiate between perfectionistic strivings and perfectionistic concerns. Regarding the 2 x 2 achievement goal framework, the usefulness of this differentiation was recently demonstrated in a study with university student athletes (Stoeber, Stoll, Pescheck, & Otto, 2008, Study 2), in which it was found that perfectionistic strivings were associated with mastery-approach and performance-approach goals and perfectionistic concerns with mastery-avoidance, performance-approach, and performance-avoidance goals. Because the study was largely exploratory and only used non-elite athletes, the aim of the present research was to replicate and extend these findings by investigating a sample of 138 young, elite ice-hockey players, while adding further measures of perfectionism and using structural equation modelling (SEM) to confirm the relationships between perfectionistic strivings, perfectionistic concerns,and the 2 x 2 achievement goals. The SEM results showed that, in elite athletes also, perfectionistic strivings are associated with mastery-approach and performance-approach goals, whereas perfectionistic concerns are associated with masteryavoidance, performance-approach, and performance-avoidance goals. Our findings corroborate the importance of differentiating between perfectionistic strivings and perfectionistic concerns when studying perfectionism in sports, because only perfectionistic concerns (and not perfectionistic strivings) are associated with maladaptive patterns of achievement goals

    Shape deformations and angular momentum transfer in trapped Bose-Einstein condensates

    Full text link
    Angular momentum can be transferred to a trapped Bose-Einstein condensate by distorting its shape with an external rotating field, provided the rotational frequency is larger than a critical frequency fixed by the energy and angular momentum of the excited states of the system. By using the Gross-Pitaevskii equation and sum rules, we explore the dependence of such a critical frequency on the multipolarity of the excitations and the asymmetry of the confining potential. We also discuss its possible relevance for vortex nucleation in rotating traps.Comment: 4 pages revtex, 2 figures include
    • …
    corecore