41,367 research outputs found
Vacuum induced Berry phases in single-mode Jaynes-Cummings models
Motivated by the work [Phys. Rev. Lett. 89, 220404 (2002)] for detecting the
vacuum-induced Berry phases with two-mode Jaynes-Cummings models (JCMs), we
show here that, for a parameter-dependent single-mode JCM, certain atom-field
states also acquire the photon-number-dependent Berry phases after the
parameter slowly changed and eventually returned to its initial value. This
geometric effect related to the field quantization still exists, even the filed
is kept in its vacuum state. Specifically, a feasible Ramsey interference
experiment with cavity quantum electrodynamics (QED) system is designed to
detect the vacuum-induced Berry phase.Comment: 10 pages, 4 figures
Probing non-Abelian statistics of Majorana fermions in ultracold atomic superfluid
We propose an experiment to directly probe the non-Abelian statistics of
Majorana fermions by braiding them in an s-wave superfluid of ultracold atoms.
We show different orders of braiding operations give orthogonal output states
that can be distinguished through Raman spectroscopy. Realization of Majorana
bound states in an s-wave superfluid requires strong spin-orbital coupling and
a controllable Zeeman field in the perpendicular direction. We present a simple
laser configuration to generate the artificial spin-orbital coupling and the
required Zeeman field in the dark state subspace.Comment: 4 pages; Add detailed discussion of feasibility of the scheme;add
ref
Recommended from our members
Experimental and Numerical Investigation on Progressive Collapse Resistance of Post-tensioned Precast Concrete Beam-Column Sub-assemblages
In this paper, four 1/2 scaled precast concrete (PC) beam-column sub-assemblages with high performance connection were tested under push-down loading procedure to study the load resisting mechanism of PC frames subjected to different column removal scenarios. The parameters investigated include the location of column removal and effective prestress in tendons. The test results indicated that the failure modes of unbonded post-tensioned precast concrete (PTPC) frames were different from that of reinforced concrete (RC) frames: no cracks formed in the beams and wide opening formed near the beam to column interfaces. For specimens without overhanging beams, the failure of side column was eccentric compression failure. Moreover, the load resisting mechanisms in PC frames were significantly different from that of RC frames: the compressive arch action (CAA) developed in concrete during column removal was mainly due to actively applied pre-compressive stress in the concrete; CAA will not vanish when severe crush in concrete occurred. Thus, it may provide negative contribution for load resistance when the displacement exceeds one-beam depth; the tensile force developed in the tendons could provide catenary action from the beginning of the test. Moreover, to deeper understand the behavior of tested specimens, numerical analyses were carried out. The effects of concrete strength, axial compression ratio at side columns, and loading approaches on the behavior of the sub-assemblages were also investigated based on validated numerical analysis
Sectoral r modes and periodic RV variations of Sun-like stars
Radial velocity (RV) measurements are used to search for planets orbiting
late-type main-sequence stars and confirm the transiting planets. The most
advanced spectrometers are approaching a precision of cm/s that
implies the need to identify and correct for all possible sources of RV
oscillations intrinsic to the star down to this level and possibly beyond. The
recent discovery of global-scale equatorial Rossby waves in the Sun, also
called r modes, prompted us to investigate their possible signature in stellar
RV measurements. R modes are toroidal modes of oscillation whose restoring
force is the Coriolis force and propagate in the retrograde direction in a
frame that corotates with the star. The solar r modes with azimuthal orders were identified unambiguously because of their dispersion
relation and their long e-folding lifetimes of hundreds of days. Here we
simulate the RV oscillations produced by sectoral r modes with assuming a stellar rotation period of 25.54 days and a maximum amplitude of
the surface velocity of each mode of 2 m/s. This amplitude is representative of
the solar measurements, except for the mode which has not yet been
observed. Sectoral r modes with azimuthal orders and would produce RV
oscillations with amplitudes of 76.4 and 19.6 cm/s and periods of 19.16 and
10.22 days, respectively, for a star with an inclination of the rotation axis
. Therefore, they may produce rather sharp peaks in the Fourier
spectrum of the radial velocity time series that could lead to spurious
planetary detections. Sectoral r~modes may represent a source of confusion in
the case of slowly rotating inactive stars that are preferential targets for RV
planet search. The main limitation of the present investigation is the lack of
observational constraint on the amplitude of the mode on the Sun.Comment: 7 pages; 4 figures; 1 table; accepted to Astronomy & Astrophysic
Experimental verification of a Jarzynski-related information-theoretic equality using a single trapped ion
Most non-equilibrium processes in thermodynamics are quantified only by
inequalities, however the Jarzynski relation presents a remarkably simple and
general equality relating non-equilibrium quantities with the equilibrium free
energy, and this equality holds in both classical and quantum regimes. We
report a single-spin test and confirmation of the Jarzynski relation in quantum
regime using a single ultracold ion trapped in a harmonic
potential, based on a general information-theoretic equality for a temporal
evolution of the system sandwiched between two projective measurements. By
considering both initially pure and mixed states, respectively, we verify, in
an exact and fundamental fashion, the non-equilibrium quantum thermodynamics
relevant to the mutual information and Jarzynski equality.Comment: 2 figure
- …