16,433 research outputs found

    Low-momentum ring diagrams of neutron matter at and near the unitary limit

    Full text link
    We study neutron matter at and near the unitary limit using a low-momentum ring diagram approach. By slightly tuning the meson-exchange CD-Bonn potential, neutron-neutron potentials with various 1S0^1S_0 scattering lengths such as as=−12070fma_s=-12070fm and +21fm+21fm are constructed. Such potentials are renormalized with rigorous procedures to give the corresponding asa_s-equivalent low-momentum potentials Vlow−kV_{low-k}, with which the low-momentum particle-particle hole-hole ring diagrams are summed up to all orders, giving the ground state energy E0E_0 of neutron matter for various scattering lengths. At the limit of as→±∞a_s\to \pm \infty, our calculated ratio of E0E_0 to that of the non-interacting case is found remarkably close to a constant of 0.44 over a wide range of Fermi-momenta. This result reveals an universality that is well consistent with the recent experimental and Monte-Carlo computational study on low-density cold Fermi gas at the unitary limit. The overall behavior of this ratio obtained with various scattering lengths is presented and discussed. Ring-diagram results obtained with Vlow−kV_{low-k} and those with GG-matrix interactions are compared.Comment: 9 pages, 7 figure

    Electromagnetic energy and energy flows in photonic crystals made of arrays of parallel dielectric cylinders

    Full text link
    We consider the electromagnetic propagation in two-dimensional photonic crystals, formed by parallel dielectric cylinders embedded a uniform medium. The frequency band structure is computed using the standard plane-wave expansion method, and the corresponding eigne-modes are obtained subsequently. The optical flows of the eigen-modes are calculated by a direct computation approach, and several averaging schemes of the energy current are discussed. The results are compared to those obtained by the usual approach that employs the group velocity calculation. We consider both the case in which the frequency lies within passing band and the situation in which the frequency is in the range of a partial bandgap. The agreements and discrepancies between various averaging schemes and the group velocity approach are discussed in detail. The results indicate the group velocity can be obtained by appropriate averaging method.Comment: 23 pages, 5 figure

    Low Momentum Nucleon-Nucleon Interactions and Shell-Model Calculations

    Get PDF
    In the last few years, the low-momentum nucleon-nucleon (NN) interaction V-low-k derived from free-space NN potentials has been successfully used in shell-model calculations. V-low-k is a smooth potential which preserves the deuteron binding energy as well as the half-on-shell T-matrix of the original NN potential up to a momentum cutoff Lambda. In this paper we put to the test a new low-momentum NN potential derived from chiral perturbation theory at next-to-next-to-next-to-leading order with a sharp low-momentum cutoff at 2.1 fm-1. Shell-model calculations for the oxygen isotopes using effective hamiltonians derived from both types of low-momentum potential are performed. We find that the two potentials show the same perturbative behavior and yield very similar results.Comment: 8 pages, 8 figures, to be published in Physical Review

    Low momentum nucleon-nucleon potential and shell model effective interactions

    Get PDF
    A low momentum nucleon-nucleon (NN) potential V-low-k is derived from meson exhange potentials by integrating out the model dependent high momentum modes of V_NN. The smooth and approximately unique V-low-k is used as input for shell model calculations instead of the usual Brueckner G matrix. Such an approach eliminates the nuclear mass dependence of the input interaction one finds in the G matrix approach, allowing the same input interaction to be used in different nuclear regions. Shell model calculations of 18O, 134Te and 135I using the same input V-low-k have been performed. For cut-off momentum Lambda in the vicinity of 2 fm-1, our calculated low-lying spectra for these nuclei are in good agreement with experiments, and are weakly dependent on Lambda.Comment: 5 pages, 5 figure

    Hermitian quark mass matrices with four texture zeros

    Get PDF
    We provide a complete and systematic analysis of hermitian, hierarchical quark mass matrices with four texture zeros. Using triangular mass matrices, each pattern of texture zeros is readily shown to lead to a definite relation between the CKM parameters and the quark masses. Nineteen pairs are found to be consistent with present data, and one other is marginally acceptable. In particular, no parallel structure between the up and down mass matrices is found to be favorable with data.Comment: 18 pages, no figure, references [8] and [10] adde

    Phase and group velocity tracing analysis of projected wave packet motion along oblique radar beams ? qualitative analysis of QP echoes

    No full text
    International audienceThe wave packets of atmospheric gravity waves were numerically generated, with a given characteristic wave period, horizontal wave length and projection mean wind along the horizontal wave vector. Their projection phase and group velocities along the oblique radar beam (vpr and vgr), with different zenith angle ? and azimuth angle ?, were analyzed by the method of phase- and group-velocity tracing. The results were consistent with the theoretical calculations derived by the dispersion relation, reconfirming the accuracy of the method of analysis. The RTI plot of the numerical wave packets were similar to the striation patterns of the QP echoes from the FAI irregularity region. We propose that the striation range rate of the QP echo is equal to the radial phase velocity vpr, and the slope of the energy line across the neighboring striations is equal to the radial group velocity vgr of the wave packet; the horizontal distance between two neighboring striations is equal to the characteristic wave period ?. Then, one can inversely calculate all the properties of the gravity wave responsible for the appearance of the QP echoes. We found that the possibility of some QP echoes being generated by the gravity waves originated from lower altitudes cannot be ruled out

    Glueball matrix elements on anisotropic lattices

    Get PDF
    We describe a lattice calculation of the matrix elements relevant for glueball production in J/ψJ / \psi radiative decays. The techniques for such a calculation on anisotropic lattices with an improved action are outlined. We present preliminary results showing the efficacy of the computational method.Comment: 3 pages (LaTeX), 3 figures (PostScript), Presented at Lattice '9

    Gravitons and Lightcone Fluctuations II: Correlation Functions

    Get PDF
    A model of a fluctuating lightcone due to a bath of gravitons is further investigated. The flight times of photons between a source and a detector may be either longer or shorter than the light propagation time in the background classical spacetime, and will form a Gaussian distribution centered around the classical flight time. However, a pair of photons emitted in rapid succession will tend to have correlated flight times. We derive and discuss a correlation function which describes this effect. This enables us to understand more fully the operational significance of a fluctuating lightcone. Our results may be combined with observational data on pulsar timing to place some constraints on the quantum state of cosmological gravitons.Comment: 16 pages and two figures, uses eps

    Realistic shell-model calculations for proton particle-neutron hole nuclei around 132Sn

    Get PDF
    We have performed shell-model calculations for nuclei with proton particles and neutron holes around 132Sn using a realistic effective interaction derived from the CD-Bonn nucleon-nucleon potential. For the proton-neutron channel this is explicitly done in the particle-hole formalism. The calculated results are compared with the available experimental data, particular attention being focused on the proton particle-neutron hole multiplets. A very good agreement is obtained for all the four nuclei considered, 132Sb, 130Sb, 133Te and 131Sb. We predict many low-energy states which have no experimental counterpart. This may stimulate, and be helpful to, future experiments.Comment: 8 pages, 6 figures, to be published on Physical Review
    • 

    corecore