51,518 research outputs found
Similarity solutions of Reaction-Diffusion equation with space- and time-dependent diffusion and reaction terms
We consider solvability of the generalized reaction-diffusion equation with
both space- and time-dependent diffusion and reaction terms by means of the
similarity method. By introducing the similarity variable, the
reaction-diffusion equation is reduced to an ordinary differential equation.
Matching the resulting ordinary differential equation with known exactly
solvable equations, one can obtain corresponding exactly solvable
reaction-diffusion systems. Several representative examples of exactly solvable
reaction-diffusion equations are presented.Comment: 11 pages, 4 figure
Generalized Rayleigh and Jacobi processes and exceptional orthogonal polynomials
We present four types of infinitely many exactly solvable Fokker-Planck
equations, which are related to the newly discovered exceptional orthogonal
polynomials. They represent the deformed versions of the Rayleigh process and
the Jacobi process.Comment: 17 pages, 4 figure
Two-dimensional gases of generalized statistics in a uniform magnetic field
We study the low temperature properties of two-dimensional ideal gases of
generalized statistics in a uniform magnetic field. The generalized statistics
considered here are the parafermion statistics and the exclusion statistics.
Similarity in the behaviours of the parafermion gas of finite order  and the
gas with exclusion coefficient  at very low temperatures is noted. These
two systems become exactly equivalent at . Qumtum Hall effect with these
particles as charge carriers is briefly discussed.Comment: Latex file, 14 pages, 5 figures available on reques
Multiple Chern-Simons Fields on a Torus
Intertwined multiple Chern-Simons gauge fields induce matrix statistics among
particles. We analyse this theory on a torus, focusing on the vacuum structure
and the Hilbert space. The theory can be mimicked, although not completely, by
an effective theory with one Chern-Simons gauge field. The correspondence
between the Wilson line integrals, vacuum degeneracy and wave functions for
these two theories are discussed. Further, it is obtained in both of these
cases that the two total momenta and Hamiltonian commute only in the physical
Hilbert space.Comment: 20 pages, UMN-TH-1128/93, plain Te
A Tidal Flare Candidate in Abell 1795
As part of our ongoing archival X-ray survey of galaxy clusters for tidal
flares, we present evidence of an X-ray transient source within 1 arcmin of the
core of Abell 1795. The extreme variability (a factor of nearly 50), luminosity
(> 2 x 10^42 erg s^{-1}), long duration (> 5 years) and supersoft X-ray
spectrum (< 0.1 keV) are characteristic signatures of a stellar tidal
disruption event according to theoretical predictions and to existing X-ray
observations, implying a massive >~10^5 M_sun black hole at the centre of that
galaxy. The large number of X-ray source counts (~700) and long temporal
baseline (~12 years with Chandra and XMM-Newton) make this one of the
best-sampled examples of any tidal flare candidate to date. The transient may
be the same EUV source originally found contaminating the diffuse ICM
observations of Bowyer et al. (1999), which would make it the only tidal flare
candidate with reported EUV observations and implies an early source luminosity
1-2 orders of magnitude greater. If the host galaxy is a cluster member then it
must be a dwarf galaxy, an order of magnitude less massive than the quiescent
galaxy Henize 2-10 which hosts a massive black hole that is difficult to
reconcile with its low mass. The unusual faintness of the host galaxy may be
explained by tidal stripping in the cluster core.Comment: Accepted by MNRAS 2013 July 23. 27 pages, 10 figure
Intermediate-mass Black Holes in Galactic Nuclei
We present the first homogeneous sample of intermediate-mass black hole
candidates in active galactic nuclei. Starting with broad-line active nuclei
from the Sloan Digital Sky Survey, we use the linewidth-luminosity-mass scaling
relation to select a sample of 19 galaxies in the mass range M_BH ~ 8 x 10^4 -
10^6 solar masses. In contrast to the local active galaxy population, the host
galaxies are ~1 mag fainter than M* and thus are probably late-type systems.
The active nuclei are also faint, with M_g ~ -15 to -18 mag, while the
bolometric luminosities are close to the Eddington limit. The spectral
properties of the sample are compared to the related class of objects known as
narrow-line Seyfert 1 galaxies. We discuss the importance of our sample as
observational analogues of primordial black holes, contributors to the
integrated signal for future gravitational wave experiments, and as a valuable
tool in the calibration of the M-sigma relation.Comment: 4 pages, 4 figures. To appear in "The Interplay among Black Holes,
  Stars and ISM in Galactic Nuclei," Proc. IAU 222 (Gramado, Brazil), eds Th.
  Storchi Bergmann, L.C. Ho, H.R. Schmit
Iron Emission in the z=6.4 Quasar SDSS J114816.64+525150.3
We present near-infrared J and K-band spectra of the z = 6.4 quasar SDSS
J114816.64+525150.3 obtained with the NIRSPEC spectrograph at the Keck-II
telescope, covering the rest-frame spectral regions surrounding the C IV 1549
and Mg II 2800 emission lines. The iron emission blend at rest wavelength
2900-3000 A is clearly detected and its strength appears nearly
indistinguishable from that of typical quasars at lower redshifts. The Fe II /
Mg II ratio is also similar to values found for lower-redshift quasars,
demonstrating that there is no strong evolution in Fe/alpha broad-line emission
ratios even out to z=6.4. In the context of current models for iron enrichment
from Type Ia supernovae, this implies that the SN Ia progenitor stars formed at
z > 10. We apply the scaling relations of Vestergaard and of McLure & Jarvis to
estimate the black hole mass from the widths of the C IV and Mg II emission
lines and the ultraviolet continuum luminosity. The derived mass is in the
range (2-6)x10^9 solar masses, with an additional uncertainty of a factor of 3
due to the intrinsic scatter in the scaling relations. This result is in
agreement with the previous mass estimate of 3x10^9 solar masses by Willott,
McLure, & Jarvis, and supports their conclusion that the quasar is radiating
close to its Eddington luminosity.Comment: To appear in ApJ Letter
Reply to Hagen & Sudarshan's Comment
We show that the argument in Phys Rev Lett 70 (1993) 1360 is correct and
consistent, and that Hagen & Sudarshan's solution has inconsistency leading to
non-vanishing commutators of  and  even in physical
states. This proves that many of HS's statements in their Comment are based
merely on incorrect guess, but not on careful algebra.Comment: one page, UMN-TH-1245/9
- …
