6,007 research outputs found
Role of surgical setting and patients-related factors in predicting the occurrence of postoperative pulmonary complications after abdominal surgery
OBJECTIVE: The aim of this retrospective study was to evaluate the role of surgical setting (urgent vs. elective) and approach (open vs. laparoscopic) in affecting postoperative pulmonary complications (PPCs) prevalence in patients undergoing abdominal surgery.
PATIENTS AND METHODS: After local Ethical Committee approval, 409 patients who had undergone abdominal surgery between January and December 2014 were included in the final analysis. PPCs were defined as the development of one of the following new findings: respiratory failure, pulmonary infection, aspiration pneumonia, pleural effusion, pneumothorax, atelectasis on chest X-ray, bronchospasm or un-planned urgent re-intubation.
RESULTS: PPCs prevalence was greater in urgent (33%) vs. elective setting (7%) (chi(2) with Yates correction: 44; p=0.0001) and in open (6%) vs. laparoscopic approach (1.9%) (chi(2) with Yates correction: 12; p=0.0006). PPCs occurrence was positively correlated with in-hospital mortality (Biserial Correlation r=0.37; p=0.0001). Logistic regression showed that urgent setting (p=0.000), Ariscat (Assess Respiratory Risk in Surgical Patients in Catalonia) score (p=0.004), and age (p=0.01) were predictors of PPCs. A cutoff of 23 for Ariscat score was also identified as determining factor for PPCs occurrence with 94% sensitivity and 29% specificity.
CONCLUSIONS: Patients undergoing abdominal surgery in an urgent setting were exposed to a higher risk of PPCs compared to patients scheduled for elective procedures. Ariscat score fitted with PPCs prevalence and older patients were exposed to a higher risk of PPCs. Prospective studies are needed to confirm these result
On the structure of phase transition maps for three or more coexisting phases
This paper is partly based on a lecture delivered by the author at the ERC
workshop "Geometric Partial Differential Equations" held in Pisa in September
2012. What is presented here is an expanded version of that lecture.Comment: 23 pages, 6 figure
Optimal control problems arising in the zinc sulphate electrolyte purification process
Before zinc electrolysis, zinc powder is added to the zinc sulphate electrolyte solution to facilitate the removal of harmful metallic ions. This purification process can be modeled by a time delay differential equation. Since some of the parameters in this model are unknown, zinc powder is normally added excessively. We use an optimization technique to estimate the unknown parameters from experimental data. Then, we formulate an optimal control problem to minimize the amount of zinc powder added. We solve this optimal control problem numerically by using the control parametrization method. The results indicate that the amount of zinc powder added can be decreased, on average, by approximately 7%
Quantum mechanical path integrals and thermal radiation in static curved spacetimes
The propagator of a spinless particle is calculated from the quantum
mechanical path integral formalism in static curved spacetimes endowed with
event-horizons. A toy model, the Gui spacetime, and the 2D and 4D Schwarzschild
black holes are considered. The role of the topology of the coordinates
configuration space is emphasised in this framework. To cover entirely the
above spacetimes with a single set of coordinates, tortoise coordinates are
extended to complex values. It is shown that the homotopic properties of the
complex tortoise configuration space imply the thermal behaviour of the
propagator in these spacetimes. The propagator is calculated when end points
are located in identical or distinct spacetime regions separated by one or
several event-horizons. Quantum evolution through the event-horizons is shown
to be unitary in the fifth variable.Comment: 22 pages, 10 figure
Microwave photovoltage and photoresistance effects in ferromagnetic microstrips
We investigate the dc electric response induced by ferromagnetic resonance in
ferromagnetic Permalloy (Ni80Fe20) microstrips. The resulting magnetization
precession alters the angle of the magnetization with respect to both dc and rf
current. Consequently the time averaged anisotropic magnetoresistance (AMR)
changes (photoresistance). At the same time the time-dependent AMR oscillation
rectifies a part of the rf current and induces a dc voltage (photovoltage). A
phenomenological approach to magnetoresistance is used to describe the distinct
characteristics of the photoresistance and photovoltage with a consistent
formalism, which is found in excellent agreement with experiments performed on
in-plane magnetized ferromagnetic microstrips. Application of the microwave
photovoltage effect for rf magnetic field sensing is discussed.Comment: 16 pages, 15 figure
Thermal radiation in non-static curved spacetimes: quantum mechanical path integrals and configuration space topology
A quantum mechanical path integral derivation is given of a thermal
propagator in non-static Gui spacetime. The thermal nature of the propagator is
understood in terms of homotopically non-trivial paths in the configuration
space appropriate to tortoise coordinates. The connection to thermal emission
from collapsing black holes is discussed.Comment: 20 pages, major revised version, 9 figures, new titl
- …