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Abstract: Before zinc electrolysis, zinc powder is added to the zinc sul-
phate electrolyte solution to facilitate the removal of harmful metallic ions.
This purification process can be modeled by a time delay differential equa-
tion. Since some of the parameters in this model are unknown, zinc pow-
der is normally added excessively. We use an optimization technique to
estimate the unknown parameters from experimental data. Then, we for-
mulate an optimal control problem to minimize the amount of zinc powder
added. We solve this optimal control problem numerically by using the
control parametrization method. The results indicate that the amount of
zinc powder added can be decreased, on average, by approximately 7%.
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1 Introduction

The zinc industry is one of the most important nonferrous industries in China. Demand
for zinc is increasing annually because of the Chinese economy’s rapid development.
Most zinc smelting production processes, which include roasting, leaching, purification
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and electrolysis, are hydrometallurgical. In zinc electrolysis, the purity of the zinc
sulphate solution is imperative. In the raw zinc sulphate solution, obtained from a
neutral thickener used for separating zinc sulphate solution from leached residue in
the leaching process, most of the impurities are metallic ions in their sulphate form.
These impurities, which include cobalt and cadmium ions, are harmful for zinc elec-
trolysis. Even a small amount of these metallic ions in the solution may hinder zinc
deposition during the electrolysis process. Existing research has focussed on the effect
of impurities on zinc electrolysis. For example, Bratt [1] stated the effect of impu-
rities by estimating the hydrogen overpotential, which influences the zinc electrolysis
significantly, using a mathematical equation. Also, Fosnacht and O’Keefe [2] designed
experiments to quantify the interactions of impurity ions.

The primary objective of the zinc sulphate solution purification process is to ob-
tain an electrolyte solution that is suitable for zinc electrolysis. Since zinc powder is
expensive, its consumption should be minimized during the purification process. This
has been the subject of many papers, see [3–5]. Most research (see, [6–12]) has focused
on experiments for determining the optimum purification conditions, such as solution
temperature, zinc dust particle size, the quantity of zinc dust added, activators con-
centration and reaction time. In addition, some works (see, for example, [15]) have
discussed the modeling and control of the zinc sulphate solution purification process in
a special scenario.

The control parametrization technique, proposed by Teo, Goh and Wong (see, [24])
has been applied to a large variety of practical problems. We will use this optimal
control method to solve the problem of minimizing zinc powder consumption in the
zinc sulphate electrolyte purification process.

First, based on the deposition reaction mechanism and chemical kinetics, we estab-
lish a dynamical model for the purification process of removing cobalt and cadmium
ions—the two main metallic ion impurities when zinc powder is present in the reaction
tank. Then, the unknown model parameters are identified using a gradient-based opti-
mization technique. After this, the problem of minimizing the zinc powder consumption
is formulated as a time delayed optimal control problem subject to continuous state
inequality constraints. By approximating the control as a piecewise constant function,
this optimal control problem is reduced to a nonlinear optimization problem that can
also be solved using gradient-based optimization method.

2 System Description

In this section, we will describe the mathematical model for the second stage of the
zinc sulphate purification process.

In a typical zinc production factory in China, the purification system consists of
three stages. In the first stage, the zinc sulphate solution obtained from the leach-
ing process passes through two agitated reaction tanks. Zinc powder is added, whose
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quantity is controlled by an electronic apparatus, at the inlet of the reaction tanks to
facilitate the deposition of cadmium, cobalt, copper and nickel ions. During this stage,
the cobalt and cadmium ion concentrations are reduced to a relatively stable level. The
concentrations of the other metallic ion impurities can also be reduced to acceptable
levels.

After filtration and reheating, the electrolyte solution is supplied to the second
stage, where a combination of zinc powder and antimony tartrate with appropriate
amount is added at the inlet of the second stage. This stage removes the cobalt ions
at higher solution temperature 85− 90◦C, meanwhile cadmium ions are also deposited
continually in this stage. In fact, zinc sulphate solution purification often involves
considerable difficulties. The deposition of cobalt ions with zinc powder is a relatively
slow process, but it may be accelerated by adding small quantities of catalyst, such as
antimony tartrate, at higher solution temperature. After the second stage, the cobalt
and cadmium ion concentrations can be reduced to acceptable levels. Finally, the solu-
tion is fed to the third stage, where a small quantity of zinc powder is added to deposit
the cadmium ions, which is redissolved into the solution again. After three stages, the
concentrations of the metallic ion impurities in the zinc sulphate electrolyte solution
are reduced to acceptable levels. Then the purified zinc sulphate solution is fed to the
electrolysis tanks after filtration and cooling.

Generally, the grade of the zinc ore for smelting is low and its composition is com-
plex. Also there are many kinds of impurities. Usually, the zinc powder is added
liberally in the first stage to guarantee that the concentrations of the metallic ion
impurities are decreased to relatively low levels. This ensures that the subsequent pu-
rification stage runs normally. Thus, the amount of zinc powder added in the first stage
is always the maximum value. The most critical stage of the entire purification process
is the second stage, which is the removal of cobalt and cadmium ions by deposition
with zinc powder. As mentioned above, the cobalt and cadmium ion concentrations
can be reduced to relatively low values after the first stage. Hence, the addition of
zinc powder can be regulated according to the measured cobalt and cadmium ion con-
centrations at the inlet of the reaction tank in the second stage. In the third stage
of the purification process, a much smaller quantity of zinc powder is added to the
reaction tanks to remove the redissolved cadmium ions. Therefore, our research will
focus on using chemical reaction laws to establish a mathematical model of the second
stage purification process, and then apply optimal control techniques to determine the
optimal rate of zinc powder addition.

2.1 Deposition reaction mechanism

Before establishing the purification process model, we will describe the deposition re-
action mechanism of the noble metallic ions in the solution. In most noble metallic ion
deposition reaction processes, deposition has been found to be controlled by boundary
layer diffusion, and the reaction is first-order with respect to the deposition of noble
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metallic ions. The generally accepted differential equation for describing the kinetics
of the deposition process has been derived under the following assumptions:

(1) The metal powder particles are spherical;

(2) The diffusion of metallic ions in the solid particles is described by Fick’s law of
diffusion;

(3) The diffusion process is in the radial direction only;

(4) The replacement reaction takes place in isothermal conditions.

Under these assumptions, if we take into consideration of the fact that the metallic
ion concentration decreases continuously with time, and the reaction surface area of
the metal powder particles does not change during the reaction, then the following
differential equation can be derived (see [8, 9]).

dC

dt
= −DU

ρV
C = −kU

V
C, (2.1)

where C is the metallic ion concentration, t is the reaction time, dC/dt is the deposition
reaction rate, D is the diffusion coefficient, ρ is the diffusion layer thickness, k is the
reaction rate coefficient, U is the reaction surface area of the solid particles, and V is
the volume of the solution. Generally, equation (2.1) reflects the relationship between
the metallic ion concentration and the reaction surface area of solid particles in the
solution.

Usually the reaction rate coefficient is determined by the different solution condi-
tions such as reactant concentration and temperature. Some experiments (see [10–12])
were designed to obtain the reaction rate coefficient. These experiments are carried out
under the particular conditions. However, there is no general experimental method for
directly calculating the reaction rate coefficient of the metallic ion deposition process
in the flowing solution.

2.2 Mathematical model

In the case of the practical industrial process, the zinc powder is added continuously to
the zinc sulphate solution at the inlet of the purification reaction tank to remove the
metallic ion impurities. Generally, only the cobalt and cadmium ions concentrations at
the inlet and outlet of the reaction tank are respectively measured at each hour. The
addition of zinc powder is adjusted at each hour according to the cobalt and cadmium
ions concentrations. Meanwhile, it usually takes two hours for zinc sulphate solution
to flow from the inlet to the outlet of the reaction tank in the second stage. That is,
the reaction time for the second stage is two hours. This is a time delayed reaction
process. But considering the complicated reaction environment and uncertainties, the
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zinc powder is added much more excessively than required so as to guarantee the qual-
ity of the production. Thus, a large amount of zinc powder is wasted. Clearly, this is
not desirable in practice.

In fact, there are other metallic ion impurities in the zinc sulphate solution. How-
ever, they will decrease if the cobalt and cadmium ions concentrations are reduced in
the zinc sulphate electrolyte solution. Here, we assume that the zinc powder only in-
volves in zinc-cobalt and zinc-cadmium deposition reaction. Thus, there are two main
replacement reactions between the metallic ion impurities and the zinc powder particles
occurring in the zinc sulphate electrolyte solution. The reactions, which are relevant
to zinc-cobalt and zinc-cadmium deposition reaction, are described by the following
chemical reaction equations (see [3–5,9]):

Co2+ + Zn → Zn2+ + Co↓,
Cd2+ + Zn → Zn2+ + Cd↓.

It is assumed that these reactions will be maintained continuously as long as there
are zinc powder particles with sufficiently small size in the solution. Meanwhile, there
is also likely some coupling reactions between different metallic ions (see [14]). For
example, the replacement reaction between cobalt ions and zinc powder particles will
be influenced by the cadmium ions or the other metallic ion impurities. To describe the
dynamical behavior of the metallic ions deposition reaction process, component balance
equations must be developed. This reaction process can be considered to occur in the
ideal continuous stirred tank reactor (CSTR), moreover, the coupling items and time
delay are also incorporated in this model. Much work has been done on the research
about CSTR, see, for example [15–17]. In recent years, a variety of approaches have
been used in the study of the synthesis of estimation and control algorithm for CSTR
in the chemical engineering. Applications of modern estimation and control technique
to CSTR have been extensively reported in the last few years. For example, Lynch
and Ramirez [18] designed a time optimal controller with a Kalman filter for state
estimation in CSTR; Knapp, Budman and Broderick [19] used an adaptive control
with a neural network model approach in CSTR; Cebuhar and Costanza [20] applied
a bilinear optimal control method to CSTR. However, few papers have applied the
knowledge of CSTR to the reaction between metallic ions and solid particles. The
second stage purification process can be described as the following dynamical equations:

V
dC1(t)

dt
= QC10 −QC1(t− 2)− k1U1C1(t− 2) + αC2(t− 2), (2.2a)

V
dC2(t)

dt
= QC20 −QC2(t− 2)− k2U2C2(t− 2) + βC1(t− 2). (2.2b)

These equations are given under the above assumptions. We can see that these
chemical reaction equations are similar because the reaction properties of zinc-cobalt
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and zinc-cadmium are similar. In the above equations, C1(t) and C2(t) represent
cobalt and cadmium ion concentrations in the reaction tank respectively; C10 and C20

represent cobalt and cadmium ion concentrations at the entry of the reaction tank; Q
is the flux of solution; V is the volume of the reaction tank; k1 and k2 are reaction rate
coefficients for cobalt and cadmium ion, respectively; α and β are coupling coefficients;
U1 and U2 are zinc powder particles reaction surface areas for the two metallic ions.
They are control variables and are converted from the weight of zinc powder because the
relationship between reaction surface area and weight is linear through the experiment
validation. In this group of equations, C10, C20, Q and V are known parameters for
computation in a period of time. We shall first use the optimal control theory to be
described in the next section to find the values of these unknown parameters k1, k2, α
and β, which best fit the observed data. In this exercise, the amount of U1 and U2 are
the actual amounts that are used, though much too excessive than required. Also, the
values of C1 and C2 for time prior to zero are obtained through interpolation of the
measured data by using cubic basis spline interpolation method (see, [25]).

By using the values of these parameters so obtained in the equations (2.2), we
formulate an optimal control problem, where the controls U1 and U2 are minimized
subject to the condition that the deviation of the corresponding values of C1(t) and
C2(t) from the previously obtained ones are within acceptable allowance at each time
point. The solution method is in the next section.

To close this section, we wish to remark that the amount of zinc powder is evaluated
as the weight, rather than the reaction surface area, in the practical production process.
However, suppose that the zinc powder particles are spherical, taking into account the
physical characteristics of the zinc powder, the relationship between the reaction surface
area and weight G of zinc powder is U = 1740(m2/kg)×G(kg). The coefficient in this
formula is measured by using a BET analyzer which is described in [10]. Clearly, the
reaction surface area obtained from the dynamical equations could be easily converted
to the weight of the zinc powder. This is then used in operation.

3 Gradient-based optimization method

Control parametrization is a computational method for solving general optimal control
problems. This technique generates a sequence of approximation to the control using
piecewise constant functions with pre-assigned switching points. In this process, the
heights of the piecewise constant functions are regarded as decision variables which
are control parameters. Each of the approximate problems is solved as a nonlinear
programming problem by using a gradient-based strategy. The explanation of this
theory is given in [24].

Consider a process described by the following system of time delayed differential
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equations defined on the fixed time interval (0, T ]:

dx(t)

dt
= f(t,x(t),x(t− h),u(t), ζ), (3.1)

where x = [x1, . . . , xn]
⊤ ∈ Rn, u = [u1, . . . , ur]

⊤ ∈ Rr, ζ = [ζ1, . . . , ζs]
⊤ ∈ Rs are,

respectively, the state, control and system parameter vectors; f = [f1, . . . , fn]
⊤ ∈ Rn;

h is the time delay satisfying 0 < h < T . The initial function for the differential
equation (3.1) is

x(t) = ϕ(t), t ∈ [−h, 0), (3.2a)

x(0) = x0, (3.2b)

where ϕ(t) = [ϕ1(t), . . . , ϕn(t)]
⊤ is a given continuous function from [−h, 0) into Rn,

and x0 is a given vector in Rn.
The system of dynamical equations (2.2) is clearly a special case of system (3.1)

with initial conditions (3.2). We shall present computational methods for solving two
classes of time delayed optimal control problems involving system (3.1) with initial
conditions (3.2). They are then applied to the study of the zinc sulphate electrolyte
purification process involving the system (2.2).

Let ti, i = 1, . . . , N , be given time points in [0, T ]. We assume that the control
takes the form given below:

up(t) = γ(t), t ∈ [−h, 0), (3.3a)

up(t) =

Np∑
i=1

σp,iχ[ti−1,ti)(t), t ∈ [0, T ], (3.3b)

where γ(t) = [γ1(t), . . . , γr(t)]
⊤ is a given piecewise continuous function from [−h, 0)

into Rr, while χ[ti−1,ti) denotes the indicator function of the interval [ti−1, ti) defined by

χI(t) =

{
1, if t ∈ I,
0, otherwise.

Define σp,i = [σp,i
1 , . . . , σp,i

r ]⊤ and σp = [(σp,1)⊤, . . . , (σp,Np)⊤]⊤. Let U ⊂ Rr be both
compact and convex. A function u given by (3.3b) with σp,i ∈ U , i = 1, . . . , Np, is
called an admissible control. Let Up be the set of all such admissible controls, and let
Θp be the set containing all σp = [(σp,1)⊤, . . . , (σp,Np)⊤]⊤ with σp,i ∈ U , i = 1, . . . , Np.
Clearly, each u ∈ Up corresponds uniquely to a σp ∈ Θp and vice versa. Let Z ⊂ Rs

be both compact and convex, and we assume that ζ = [ζ1, . . . , ζs]
⊤ ∈ Z. With u ∈ Up,

the system of time delayed differential equations (3.1) can be written as:

dx(t)

dt
= f̃(t,x(t),x(t− h),σp, ζ), (3.4)
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where

f̃(t,x(t),x(t− h),σp, ζ) = f(t,x(t),x(t− h),

Np∑
i=1

σp,iχ[ti−1,ti)(t), ζ).

We may now state a time delayed optimal control problem with multiple charac-
teristic time points appearing in the cost and constraint functions as follows:
Problem (P1). Given the dynamical system (3.4) with initial conditions (3.2), find
a parameter vector (σp, ζ) ∈ Θp × Z such that the cost function

g0(σ
p, ζ) = Φ0(x(τ1 | σp, ζ), . . . ,x(τM+1 | σp, ζ)) +

∫ T

0

L̃0(t,x(t),x(t− h),σp, ζ)dt

(3.5)
is minimized subject to the following canonical inequality constraints:

gm(σ
p, ζ) =Φm(x(τ1 | σp, ζ), . . . ,x(τM+1 | σp, ζ))

+

∫ T

0

L̃m(t,x(t),x(t− h),σp, ζ)dt ≥ 0, m = 1, . . . , N, (3.6)

where the time points τi, 0 < τi < T , i = 1, . . . ,M , are referred to as the characteristic
time points, while

L̃m(t,x(t),x(t−h),σp, ζ) = Lm(t,x(t),x(t−h),

Np∑
i=1

σp,iχ[ti−1,ti)(t), ζ), m = 0, 1, . . . , N.

We use the conventions that τ0 = 0 and τM+1 = T .
In practice, many constraints do not appear as in the form of canonical constraints.

Rather, they appear in the form of continuous state inequality constraints. We may
now describe the corresponding optimal control problem as follows:
Problem (P2). Given the dynamical system (3.4) with initial conditions (3.2), find
a (σp, ζ) ∈ Θp × Z such that the cost function

g0(σ
p, ζ) = Φ0(x(T | σp, ζ)) +

∫ T

0

L̃0(t,x(t),x(t− h),σp, ζ)dt (3.7)

is minimized over Θp×Z subject to the continuous state inequality constraints defined
by

hi(t,x(t | σp, ζ), ζ) ≥ 0, t ∈ [0, T ], i = 1, . . . , N, (3.8)

where hi, i = 1, . . . , N , are continuously differentiable functions defined on [0, T ] ×
Rn × Rs.

Using the constraint transcription method introduced in Chapter 8 of [24], each of
these continuous state inequality constraints is approximated by the inequality con-
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straint in canonical form

γ +

∫ T

0

Li,ε(t,x(t | σp, ζ), ζ)dt ≥ 0, (3.9)

where

Li,ε(t,x(t | σp, ζ), ζ) =


hi, if hi < −ε,
−(hi − ε)2/4ε, if− ε ≤ hi ≤ ε,
0, if hi > ε.

ε > 0 is a smoothing parameter, which is a small adjustable quantity. It is shown in
the reference [24] that, under appropriate assumption, there exists a γ(ε) > 0 such that
for each γ, 0 < γ < γ(ε), if an admissible (σp, ζ) ∈ Θp × Z satisfies the constraints
(3.9), it also satisfies the constraints (3.8). Thus, optimal control problems involving
continuous state inequality constraints of the form (3.8) can always be approximated
by a sequence of optimal control problems involving inequality constraints in canonical
form, i.e. in the form of Problem (P1).

To solve Problem (P1) as a mathematical programming problem by using a gradient-
based technique, such as the sequential quadratic programming (SQP) approximation
scheme, it is required to know, for a given (σp, ζ) ∈ Θp×Z, the values of the cost func-
tion (3.5) and the constraint functions (3.9). We also require the information of their
gradients. The calculation of the values of the cost function (3.5) and the constraint
functions (3.9) can be achieved quite easily. We solve, for a given (σp, ζ) ∈ Θp × Z,
the corresponding solution of the system (3.4) with initial condition (3.2). Then, the
values of the cost and constraint functions can be calculated readily. To calculate the
gradients of these functions, we have the following theorem, which presents the required
gradient formulae.
Theorem 1. Consider Problem (P1). For each m = 0, 1, . . . , N , the gradients of the
function gm with respect to σp and ζ are given by

∂gm(σ
p, ζ)

∂σp,i
=

M+1∑
i=1

∫ τi

τi−1

∂Hm

∂σp,i
χ[τi−1,τi)dt,

∂gm(σ
p, ζ)

∂ζ
=

M+1∑
i=1

∫ τi

τi−1

∂Hm

∂ζ
dt,

where

Hm = L̃m(t,x(t),x(t− h),σp, ζ) + (λm)⊤f̃(t,x(t),x(t− h),σp, ζ),

and λm(t) is the corresponding solution of the respective co-state system defined by

d(λm(t))⊤

dt
= −∂Hm

∂x
− ∂Ĥm

∂x
,
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where t ∈ (τi−1, τi), i = 1, . . . ,M + 1, with the jump conditions

λm(τ+i )
⊤ − λm(τ−i )

⊤ = −∂Φm(x(τ1), . . . ,x(τM+1))

∂x(τi)
, for i = 1, . . . ,M,

and the terminal condition

(λm(T ))⊤ =
∂Φm(x(τ1), . . . ,x(τM),x(T ))

∂x(T )
,

λm(t) = 0, t > T,

where
λ̂

m
(t) = λm(t+ h),

Ĥm =L̃m(t+ h,x(t+ h),x(t),σp, ζ)e(T − t− h)

+ (λ̂
m
)⊤f̃(t+ h,x(t+ h),x(t),σp, ζ)e(T − t− h),

and e(·) is the unit step function.
Proof. The proof follows the steps of the proof given for Theorem 5.5.1 in Chapter
5 of [24] but with the terms involving the multiple characteristic time points being
handled by the approach given for the proof of Theorem 4.3 in Chapter 4 of [21].

From Theorem 1, we see that we can calculate, for each (σp, ζ) ∈ Θp × Z, the
gradients of the cost and constraint functions. Hence, Problem (P1) can be solved as
a nonlinear optimization problem by using a gradient-based technique. Here, the SQP
approximation scheme is used.

4 Simulation

We now return to the problem of optimal control of the zinc sulphate electrolyte so-
lution purification process. Consider the dynamical model given in Section 2.2. Let
Ĉ1(i) and Ĉ2(i) denote, respectively, the observed data of concentrations of cobalt and
cadmium ions at the measurement time points i = 1, . . . , 8. Our first aim is to choose
the optimal system parameters k1, k2, α, β and the control (Up

1 , U
p
2 ), where U

p
1 and Up

2

are parameterized by (3.3b), i.e.

Up
1 (t) =

8∑
i=1

σp,i
1 χ[i−1,i)(t), (4.1a)

Up
2 (t) =

8∑
i=1

σp,i
2 χ[i−1,i)(t), (4.1b)
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so that the trajectory “best” fits the observed data at these measurement time points.
However, the total quantity of added zinc powder is known, so Γ is taken as a total zinc
powder reaction surface area. Here, we set Up

2 = Γ − Up
1 . Thus, only Up

1 is a control
to be obtained. We now need to find four parameters k1, k2, α, β and a control Up

1 ,
being parameterized by (4.1a), such that the following cost function

J1 =
8∑

i=1

[(C1(i)− Ĉ1(i))
2 + (C2(i)− Ĉ2(i))

2] (4.2)

is minimized with respect to the parameters k1, k2, α, β and σp,i
1 , i = 1, . . . , 8, where

C1(i) and C2(i) are, respectively, the concentrations of cobalt and cadmium ions at
the time points i = 1, . . . , 8 calculated from the solution of the system of time delayed
differential equations corresponding to the choice of parameters k1, k2, α, β and σp,i

1 ,
i = 1, . . . , 8.
Remark 1. The states before zero time point are obtained through interpolation of
the measured data at the measurement time points prior to the zero time point. The
cubic basis spline interpolation method (see [25]) is adopted to construct the fitting
curve which passes through all the measurement data.

To use a gradient-based optimization technique, such as the SQP approximation
scheme with active set strategy (see [24]), we need the gradient formulae of the cost
function (4.2) with respect to the parameters k1, k2, α, β and σp,i

1 , i = 1, . . . , 8. By
virtue of Theorem 1, they are given by the following formulae

∂J1
∂k1

= − 1

V

8∑
i=1

∫ i

i−1

σp,i
1 λ1(t)C1(t− 2)dt, (4.3a)

∂J1
∂k2

= − 1

V

8∑
i=1

∫ i

i−1

(Γ− σp,i
1 )λ2(t)C2(t− 2)dt, (4.3b)

∂J1
∂α

=
1

V

8∑
i=1

∫ i

i−1

λ1(t)C2(t− 2)dt, (4.3c)

∂J1
∂β

=
1

V

8∑
i=1

∫ i

i−1

λ2(t)C1(t− 2)dt, (4.3d)

∂J1

∂σp,i
1

= − 1

V

∫ i

i−1

(k1λ1(t)C1(t− 2)− k2λ2(t)C2(t− 2))dt, (4.3e)
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where (λ1, λ2) is the solution of the co-state system given below

dλ1(t)

dt
= (

Q

V
+

k1σ
p,i
1

V
)λ1(t+ 2)e(6− t)− β

V
λ2(t+ 2)e(6− t), (4.4a)

dλ2(t)

dt
= (

Q

V
+

k2(Γ− σp,i
1 )

V
)λ2(t+ 2)e(6− t)− α

V
λ1(t+ 2)e(6− t), (4.4b)

where t ∈ (i− 1, i), i = 1, . . . , 8, with the jump conditions

λ1(i
+)− λ1(i

−) = −2(C1(i)− Ĉ1(i)), for i = 1, . . . , 7, (4.5a)

λ2(i
+)− λ2(i

−) = −2(C2(i)− Ĉ2(i)), for i = 1, . . . , 7, (4.5b)

and the terminal condition

λ1(8) = 2(C1(8)− Ĉ1(8)), (4.6a)

λ2(8) = 2(C2(8)− Ĉ2(8)), (4.6b)

λ1(t) = 0, λ2(t) = 0, t > 8. (4.6c)

Now, for each given parameters k1, k2, α, β and σp,i
1 , i = 1, . . . , 8, the value of the

cost function and the corresponding gradients with respect to these parameters can be
calculated as detailed in the following algorithm.
Algorithm 1. Step 1. For each given parameters k1, k2, α, β and σp,i

1 , i = 1, . . . , 8,
compute the solution (C1, C2) of the state of the dynamical system by solving the
differential equations (2.2) forward from t = 0 to t = 1, where the initial conditions,
i.e., C1(t) and C2(t) for t ∈ [−2, 0] constructed as indicated in Remark 1. Then, the
differential equations (2.2) are solved forward from t = 1 to t = 2, where the initial
conditions, i.e., C1(t) and C2(t) for t ∈ [0, 1], constructed through interpolation by
using linear function on the subinterval [0, 1]. This process is continued until we obtain
all values of C1(t) and C2(t) on the time interval [0, 8].

Step 2. With the solution (C1, C2) obtained in Step 1, the value of the cost function
J1 can be easily calculated by using (4.2).

Step 3. Solve the co-state system (4.4) with the terminal condition (4.6) backward
from t = 8 to t = 7. Use the jump condition (4.5) to determine λ1(7

−), λ2(7
−). Then,

the co-state system (4.4) is solved backward from t = 7 to t = 6, where the terminal
conditions λ1(7

−), λ2(7
−) and λ1(t), λ2(t) for t ∈ (7, 8], constructed through interpo-

lation by using linear function on subinterval (7, 8]. This process is continued until we
obtain all values of λ1(t) and λ2(t) on the time interval [0, 8].

Step 4. Compute the gradients of the cost function with respect to the system
parameters k1, k2, α, β and the control parameters σp,i

1 , i = 1, . . . , 8 according to (4.3).
With Algorithm 1, a gradient-based optimization technique, such as the SQP ap-

proximation scheme, can be used to minimize the cost function (4.2) with respect to
the system parameters and the control parameters. The optimal parameters obtained
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are:
k1 = 7.828×10−4, k2 = 2.823×10−4, α = 16.67, β = 7.107×102, σp,1

1 = 6.5386×104,
σp,2
1 = 1.0627 × 105, σp,3

1 = 8.9681 × 104, σp,4
1 = 1.11603 × 105, σp,5

1 = 1.13674 × 105,
σp,6
1 = 9.835× 104, σp,7

1 = 8.9673× 104, σp,8
1 = 1.01823× 105.

Let C̄j, j = 1, 2, be the concentrations of cobalt and cadmium ions corresponding
to these optimal parameters. They are shown as dashed lines in Figures 1-2. After
these optimal parameters are obtained, we move on to find the controls Up

1 and Up
2

in the next step. As we know, the zinc powder reaction surface areas used are rather
excessive than required. We thus move to minimize the zinc powder reaction surface
areas subject to the condition that the possible deviations of Cj(t), j = 1, 2, which are
the solutions of the system of time delayed differential equations corresponding to the
choice of the controls U1 and U2, from C̄j(t), j = 1, 2, are within an acceptable limit.

This can be stated as a time delayed optimal control problem in the form of Problem
(P2), where

J2 = (C1(8)− C̄1(8))
2 + (C2(8)− C̄2(8))

2 +

∫ 8

0

(Up
1 (t)

2 + Up
2 (t)

2)dt (4.7)

is minimized with respect to the control parameters σp,i
1 and σp,i

2 , i = 1, . . . , 8, subject
to the continuous state inequality constraints

Cj,e = e− (Cj(t)− C̄j(t))
2 ≥ 0, t ∈ [0, 8], j = 1, 2, (4.8)

where e > 0 is an error bound.
Using the constraint transcription method (see (3.9)), each of the continuous state

inequality constraints (4.8) is approximated by a sequence of inequality constraint in
canonical form given below

Cj,ε = γ +

∫ 8

0

Lj,ε(t, Cj(t))dt ≥ 0, j = 1, 2, (4.9)

where

Lj,ε(t, Cj(t)) =


e− (Cj(t)− C̄j(t))

2, if Cj,e < −ε,
−(e− (Cj(t)− C̄j(t))

2 − ε)2/4ε, if− ε ≤ Cj,e ≤ ε,
0, if Cj,e > ε.

Here, ε > 0 is an adjustable parameter controlling the accuracy of the approximation,
while γ > 0 is an adjustable parameter controlling the feasibility of the constraints.

By virtue of Theorem 1, the gradient formulae of the cost function (4.7) with respect
to the control parameters σp,i

1 and σp,i
2 , i = 1, . . . , 8, in each time interval are given by

∂J2

∂σp,i
1

=

∫ i

i−1

(2σp,i
1 − k1

V
λ0,1(t)C1(t− 2))dt,
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∂J2

∂σp,i
2

=

∫ i

i−1

(2σp,i
2 − k2

V
λ0,2(t)C2(t− 2))dt.

where [λ0,1, λ0,2]
⊤ is the solution of the co-state system given below

dλ0,1(t)

dt
= (

Q

V
+

k1σ
p,i
1

V
)λ0,1(t+ 2)e(6− t)− β

V
λ0,2(t+ 2)e(6− t),

dλ0,2(t)

dt
= (

Q

V
+

k2σ
p,i
2

V
)λ0,2(t+ 2)e(6− t)− α

V
λ0,1(t+ 2)e(6− t),

with the terminal condition

λ0,1(8) = 2(C1(8)− C̄1(8)),

λ0,2(8) = 2(C2(8)− C̄2(8)),

λ0,1(t) = 0, λ0,2(t) = 0, t > 8.

Meanwhile, the gradient formulae of the constraint functions (4.9) with respect to
the control parameters σp,i

1 and σp,i
2 , i = 1, . . . , 8, in each time interval are given by

∂C1,ε

∂σp,i
1

= −
∫ i

i−1

k1
V
λ1,1(t)C1(t− 2)dt,

∂C1,ε

∂σp,i
2

= −
∫ i

i−1

k2
V
λ1,2(t)C2(t− 2)dt,

∂C2,ε

∂σp,i
1

= −
∫ i

i−1

k1
V
λ2,1(t)C1(t− 2)dt,

∂C2,ε

∂σp,i
2

= −
∫ i

i−1

k2
V
λ2,2(t)C2(t− 2)dt.

where [λ1,1, λ1,2, λ2,1, λ2,2]
⊤ is the solution of the co-state system given below

dλ1,1(t)

dt
= −∂L1,ε

∂C1

+ (
Q

V
+

k1σ
p,i
1

V
)λ1,1(t+ 2)e(6− t)− β

V
λ1,2(t+ 2)e(6− t),

dλ1,2(t)

dt
= (

Q

V
+

k2σ
p,i
2

V
)λ1,2(t+ 2)e(6− t)− α

V
λ1,1(t+ 2)e(6− t),

dλ2,1(t)

dt
= (

Q

V
+

k1σ
p,i
1

V
)λ2,1(t+ 2)e(6− t)− β

V
λ2,2(t+ 2)e(6− t),

dλ2,2(t)

dt
= −∂L2,ε

∂C2

+ (
Q

V
+

k2σ
p,i
2

V
)λ2,2(t+ 2)e(6− t)− α

V
λ2,1(t+ 2)e(6− t),

14



with the terminal condition

λ1,1(8) = 0, λ1,2(8) = 0,

λ2,1(8) = 0, λ2,2(8) = 0,

λ1,1(t) = 0, λ1,2(t) = 0, t > 8,

λ2,1(t) = 0, λ2,2(t) = 0, t > 8,

where

∂Lj,ε

∂Cj

=


−2(Cj(t)− C̄j(t)), if Cj,e < −ε,
(e− (Cj(t)− C̄j(t))

2 − ε)(Cj(t)− C̄j(t))/ε, if− ε ≤ Cj,e ≤ ε,
0, if Cj,e > ε.

j = 1, 2

The way of adjusting ε and γ is detailed in the following algorithm.
Algorithm 2. Input parameters ε, γ.

Step 1. Choose σp,i,0
1 and σp,i,0

2 , i = 1, . . . , 8. Solve the approximate Problem (P2)
by using the SQP approximation scheme, where the values of the cost function and
the corresponding gradients are calculated as detailed in Algorithm 1. Let the optimal
solution obtained be denoted by σp,i,∗

1 and σp,i,∗
2 , i = 1, . . . , 8.

Step 2. Check feasibility of Cj,e(t, Cj(t | σp,i,∗
j )) ≥ 0, j = 1, 2, i = 1, . . . , 8, for all

t ∈ [0, 8]. If σp,i,∗
1 , σp,i,∗

2 , i = 1, . . . , 8, are feasible, go to Step 4, otherwise, go to Step 3.
Step 3. Set γ = γ/10 and go to Step 1.
Step 4. Set ε = ε/10, if ε > εmin, then go to Step 1, else successfully exist.
The obtained optimal cobalt and cadmium ions concentrations are shown as solid

lines in Figures 1-2. We see that these optimal concentrations remain on track to the
measured data. Several measured data deviate rather far away from the calculated
concentration. This is expected, as the measurements are carried out manually by
using some special chemical instruments. Inevitably, it will lead to some measurement
inaccuracy. However, the trajectory obtained does reflect the basic characteristic of
the practical scenarios under study.

The obtained optimal control parameters are:
σp,1
1 = 1.08282×105, σp,2

1 = 1.57032×105, σp,3
1 = 1.23983×105, σp,4

1 = 1.55718×105,
σp,5
1 = 1.58877× 105, σp,6

1 = 1.43113× 105, σp,7
1 = 1.24693× 105, σp,8

1 = 1.24739× 105,
σp,1
2 = 5.20019 × 105, σp,2

2 = 4.6972 × 105, σp,3
2 = 4.97383 × 105, σp,4

2 = 4.60475 × 105,
σp,5
2 = 4.52652× 105, σp,6

2 = 4.63645× 105, σp,7
2 = 4.73757× 105, σp,8

2 = 4.61721× 105.
As mentioned before, the amount of zinc powder actually added is expressed as a

whole quantity and the reaction surface areas U1 and U2 can be converted to the weight
according to the linear relationship between the weight and reaction surface area of
zinc powder. Thus, the respective weight of zinc powder for cobalt and cadmium ions
are shown in Figures 3-4. The total weight of zinc powder is shown in Figure 5. We see
that the average weight is much lower than the one used in current practice, shown as
dashed line. Our proposed method has found the optimal consumption of zinc powder
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Figure 1: Cobalt ion concentration.
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Figure 2: Cadmium ion concentration.

at each hour effectively.

5 Conclusion

Based on the metallic ion deposition mechanism and chemical kinetics, a dynami-
cal model for the zinc sulphate electrolyte purification process was established. This
model was described by a system of time delayed ordinary differential equations, in
which some of the parameters are unknown. After the parameters have been iden-
tified, the problem of minimizing the consumption of zinc powder, which is used to
remove the metallic ion impurities, can be formulated as an optimal control problem
involving a time delayed dynamical system and subject to continuous state constraints.
The control parametrization method, which involves approximating the control by a
piecewise constant function, was applied to derive an approximate problem. This ap-
proximate problem can be solved using the SQP approximation method, which is an
efficient gradient-based optimization method. The simulation results obtained have
clearly indicated the effectiveness of the proposed method.
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