562 research outputs found

    Pairing interactions and pairing mechanism in high temperature copper oxide superconductors

    Full text link
    The polaron binding energy E_{p} in undoped parent cuprates has been determined to be about 1.0 eV from the unconventional oxygen-isotope effect on the antiferromagnetic ordering temperature. The deduced value of E_{p} is in quantitative agreement with that estimated from independent optical data and that estimated theoretically from the measured dielectric constants. The substantial oxygen-isotope effect on the in-plane supercarrier mass observed in optimally doped cuprates suggests that polarons are bound into the Cooper pairs. We also identify the phonon modes that are strongly coupled to conduction electrons from the angle-resolved photoemission spectroscopy, tunneling spectra, and optical data. We consistently show that there is a very strong electron-phonon coupling feature at a phonon energy of about 20 meV along the antinodal direction and that this coupling becomes weaker towards the diagonal direction. We further show that high-temperature superconductivity in cuprates is caused by strong electron-phonon coupling, polaronic effect, and significant coupling with 2 eV Cu-O charge transfer fluctuation.Comment: 11 pages, 7 figure

    Structure of the exotic spin-flop states in BaCu2Si2O7

    Full text link
    The unusual 2-stage spin flop transition in BaCu2Si2O7 is studied by single-crystal neutron diffraction. The magnetic structures of the various spin-flop phases are determined. The results appear to be inconsistent with the previously proposed theoretical explanation of the 2-stage transition.Comment: 6 pages 5 figure

    Metal-insulator Crossover Behavior at the Surface of NiS_2

    Full text link
    We have performed a detailed high-resolution electron spectroscopic investigation of NiS2_2 and related Se-substituted compounds NiS2x_{2-x}Sex_x, which are known to be gapped insulators in the bulk at all temperatures. A large spectral weight at the Fermi energy of the room temperature spectrum, in conjunction with the extreme surface sensitivity of the experimental probe, however, suggests that the surface layer is metallic at 300 K. Interestingly, the evolution of the spectral function with decreasing temperature is characterized by a continuous depletion of the single-particle spectral weight at the Fermi energy and the development of a gap-like structure below a characteristic temperature, providing evidence for a metal-insulator crossover behavior at the surfaces of NiS2_2 and of related compounds. These results provide a consistent description of the unusual transport properties observed in these systems.Comment: 12 pages, 3 figure

    Properties and Detection of Spin Nematic Order in Strongly Correlated Electron Systems

    Full text link
    A spin nematic is a state which breaks spin SU(2) symmetry while preserving translational and time reversal symmetries. Spin nematic order can arise naturally from charge fluctuations of a spin stripe state. Focusing on the possible existence of such a state in strongly correlated electron systems, we build a nematic wave function starting from a t-J type model. The nematic is a spin-two operator, and therefore does not couple directly to neutrons. However, we show that neutron scattering and Knight shift experiments can detect the spin anisotropy of electrons moving in a nematic background. We find the mean field phase diagram for the nematic taking into account spin-orbit effects.Comment: 13 pages, 11 figures. (v2) References adde

    Theory of extraordinary optical transmission through subwavelength hole arrays

    Full text link
    We present a fully three-dimensional theoretical study of the extraordinary transmission of light through subwavelength hole arrays in optically thick metal films. Good agreement is obtained with experimental data. An analytical minimal model is also developed, which conclusively shows that the enhancement of transmission is due to tunneling through surface plasmons formed on each metal-dielectric interfaces. Different regimes of tunneling (resonant through a ''surface plasmon molecule", or sequential through two isolated surface plasmons) are found depending on the geometrical parameters defining the system.Comment: 4 pages, 4 figure

    Dzyaloshinsky-Moriya antisymmetric exchange coupling in cuprates: Oxygen effects

    Full text link
    We revisit a problem of Dzyaloshinsky-Moriya antisymmetric exchange coupling for a single bond in cuprates specifying the local spin-orbital contributions to Dzyaloshinsky vector focusing on the oxygen term. The Dzyaloshinsky vector and respective weak ferromagnetic moment is shown to be a superposition of comparable and, sometimes, competing local Cu and O contributions. The intermediate oxygen 17^{17}O Knight shift is shown to be an effective tool to inspect the effects of Dzyaloshinsky-Moriya coupling in an external magnetic field. We predict the effect of strongstrong oxygen weak antiferromagnetism in edge-shared CuO2_2 chains due to uncompensated oxygen Dzyaloshinsky vectors. Finally, we revisit the effects of symmetric spin anisotropy, in particular, those directly induced by Dzyaloshinsky-Moriya coupling.Comment: 12 pages, 2 figures, submitted to JET

    Suppression of Antiferromagnetic Order by Light Hole Doping in La_2Cu_{1-x}Li_xO_4: A ^{139}La NQR Study

    Full text link
    ^{139}La nuclear quadrupole resonance measurements in lightly doped La_2Cu_{1-x}Li_xO_4 have been performed to reveal the dependence of the magnetic properties of the antiferromagnetic CuO_2 planes on the character of the doped holes and their interactions with the dopant. A detailed study shows that the magnetic properties are remarkably insensitive to the character of the dopant impurity. This indicates that the added holes form previously unrecognized collective structures.Comment: 4 pages, 3 figures. Slightly modified version, as accepted for publication in Physical Review Letter

    Familial co-aggregation and shared genetics of cardiometabolic disorders and traits:data from the multi-generational Lifelines Cohort Study

    Get PDF
    BACKGROUND: It is unclear to what extent genetics explain the familial clustering and the co-occurrence of distinct cardiometabolic disorders in the general population. We therefore aimed to quantify the familial (co-)aggregation of various cardiometabolic disorders and to estimate the heritability of cardiometabolic traits and their genetic correlations using the large, multi-generational Lifelines Cohort Study.METHODS: We used baseline data of 162,416 participants from Lifelines. Cardiometabolic disorders including type 2 diabetes (T2D), cardiovascular diseases, hypertension, obesity, hypercholesterolemia, and metabolic syndrome (MetS), were defined in adult participants. Fifteen additional cardiometabolic traits indexing obesity, blood pressure, inflammation, glucose regulation, and lipid levels were measured in all included participants. Recurrence risk ratios (λ R) for first-degree relatives (FDR) indexed familial (co-)aggregation of cardiometabolic disorders using modified conditional Cox proportional hazards models and were compared to those of spouses. Heritability (h 2), shared environment, and genetic correlation (r g) were estimated using restricted maximum likelihood variance decomposition methods, adjusted for age, age 2, and sex. RESULTS: Individuals with a first-degree relative with a cardiometabolic disorder had a higher risk of the same disorder, ranging from λ FDR of 1.23 (95% CI 1.20-1.25) for hypertension to λ FDR of 2.48 (95% CI 2.15-2.86) for T2D. Most of these were higher than in spouses (λ Spouses  &lt; λ FDR), except for obesity which was slightly higher in spouses. We found moderate heritability for cardiometabolic traits (from h 2 CRP: 0.26 to h 2 HDL: 0.50). Cardiometabolic disorders showed positive familial co-aggregation, particularly between T2D, MetS, and obesity (from λ FDR obesity-MetS: 1.28 (95% CI 1.24-1.32) to λ FDR MetS-T2D: 1.61 (95% CI 1.52-1.70)), consistent with the genetic correlations between continuous intermediate traits (ranging from r g HDL-Triglycerides: - 0.53 to r g LDL-Apolipoprotein B: 0.94). CONCLUSIONS: There is positive familial (co-)aggregation of cardiometabolic disorder, moderate heritability of intermediate traits, and moderate genetic correlations between traits. These results indicate that shared genetics and common genetic architecture contribute to cardiometabolic disease.</p
    corecore