721 research outputs found

    Alterations in the Microbiota of Caged Honeybees in the Presence of Nosema ceranae Infection and Related Changes in Functionality

    Get PDF
    Several studies have outlined that changes in the honeybee gut microbial composition may impair important metabolic functions supporting the honeybees’ life. Gut dysbiosis may be caused by diseases like Nosema ceranae or by other anthropic, environmental or experimental stressors. The present work contributes to increasing knowledge on the dynamics of the gut microbiome acquisition in caged honeybees, an experimental condition frequently adopted by researchers, with or without infection with N. ceranae, and fed with a bacterial mixture to control N. ceranae development. Changes of the gut microbiota were elucidated comparing microbial profile of caged and open-field reared honeybees. The absolute abundance of the major gut microbial taxa was studied with both NGS and qPCR approaches, whereas changes in the functionality were based on RAST annotations and manually curated. In general, all caged honeybees showed important changes in the gut microbiota, with γ-proteobacteria (Frischella, Gilliamella and Snodgrassella) lacking in all caged experimental groups. Caged honeybees infected with N. ceranae showed also a strong colonization of environmental taxa like Citrobacter, Cosenzaea and Morganella, as well as possibly pathogenic bacteria such as Serratia. The colonization of Serratia did not occur in presence of the bacterial mixture. The functionality prediction revealed that environmental bacteria or the supplemented bacterial mixture increased the metabolic potential of the honeybee gut microbiome compared to field and caged controls

    On the environmental impacts of voluntary animal-based policies in the EU: Technical and political considerations

    Get PDF
    The livestock sector has a large influence on direct and indirect (via land use change) greenhouse gas emissions, with potential negative impacts on climate change. We quantify the environmental impacts related to the introduction of a voluntary animal-based policy supported by the European Union (EU), the Measure 14 of Rural Development Programmes 2014–2020 on animal welfare. In particular, we focus on methane and nitrous oxide emissions (direct impacts), and on carbon-based and nitrous oxide emissions from land use change (indirect impacts). Our case study is the dairy sector of the EU Member States. We found that the animal-based measures have (on average) limited environmental impacts, although marked differences exist across Member States

    Involvement of pro-inflammatory cytokines and growth factors in the pathogenesis of Dupuytren's contracture: a novel target for a possible future therapeutic strategy?

    Get PDF
    Dupuytren's contracture (DC) is a benign fibro-proliferative disease of the hand causing fibrotic nodules and fascial cords which determine debilitating contracture and deformities of fingers and hands. The present study was designed to characterize pro-inflammatory cytokines and growth factors involved in the pathogenesis, progression and recurrence of this disease, in order to find novel targets for alternative therapies and strategies in controlling DC. The expression of pro-inflammatory cytokines and of growth factors was detected by immunohistochemistry in fibrotic nodules and normal palmar fascia resected respectively from patients affected by DC and carpal tunnel syndrome (CTS; as negative controls). Reverse transcription (RT)-PCR analysis and immunofluorescence were performed to quantify the expression of transforming growth factor (TGF)-β1, interleukin (IL)-1β and vascular endothelial growth factor (VEGF) by primary cultures of myofibroblasts and fibroblasts isolated from Dupuytren's nodules. Histological analysis showed high cellularity and high proliferation rate in Dupuytren's tissue, together with the presence of myofibroblastic isotypes; immunohistochemical staining for macrophages was completely negative. In addition, a strong expression of TGF-β1, IL-1β and VEGF was evident in the extracellular matrix and in the cytoplasm of fibroblasts and myofibroblasts in Dupuytren's nodular tissues, as compared with control tissues. These results were confirmed by RT-PCR and by immunofluorescence in pathological and normal primary cell cultures. These preliminary observations suggest that TGF-β1, IL-1β and VEGF may be considered potential therapeutic targets in the treatment of Dupuytren's disease (DD)

    Honeybees exposure to natural feed additives: How is the gut microbiota affected?

    Get PDF
    The role of a balanced gut microbiota to maintain health and prevent diseases is largely established in humans and livestock. Conversely, in honeybees, studies on gut microbiota perturbations by external factors have started only recently. Natural methods alternative to chemical products to preserve honeybee health have been proposed, but their effect on the gut microbiota has not been examined in detail. This study aims to investigate the effect of the administration of a bacterial mixture of bifidobacteria and Lactobacillaceae and a commercial product HiveAlive™ on honeybee gut microbiota. The study was developed in 18 hives of about 2500 bees, with six replicates for each experimental condition for a total of three experimental groups. The absolute abundance of main microbial taxa was studied using qPCR and NGS. The results showed that the majority of the administered strains were detected in the gut. On the whole, great perturbations upon the administration of the bacterial mixture and the plant-based commercial product were not observed in the gut microbiota. Significant variations with respect to the untreated control were only observed for Snodgrassella sp. for the bacterial mixture, Bartonella sp. in HiveAlive™ and Bombilactobacillus sp. for both. Therefore, the studied approaches are respectful of the honeybee microbiota composition, conceivably without compromising the bee nutritional, social and ecological functions

    Mass accretion rates of clusters of galaxies: CIRS and HeCS

    Full text link
    We use a new spherical accretion recipe tested on N-body simulations to measure the observed mass accretion rate (MAR) of 129 clusters in the Cluster Infall Regions in the Sloan Digital Sky Survey (CIRS) and in the Hectospec Cluster Survey (HeCS). The observed clusters cover the redshift range of 0.01<z<0.300.01<z<0.30 and the mass range of 10141015h1 M\sim 10^{14}-10^{15} {h^{-1}~\rm{M_\odot}}. Based on three-dimensional mass profiles of simulated clusters reaching beyond the virial radius, our recipe returns MARs that agree with MARs based on merger trees. We adopt this recipe to estimate the MAR of real clusters based on measurements of the mass profile out to 3R200\sim 3R_{200}. We use the caustic method to measure the mass profiles to these large radii. We demonstrate the validity of our estimates by applying the same approach to a set of mock redshift surveys of a sample of 2000 simulated clusters with a median mass of M200=1014h1 MM_{200}= 10^{14} {h^{-1}~\rm{M_{\odot}}} as well as a sample of 50 simulated clusters with a median mass of M200=1015h1 MM_{200}= 10^{15} {h^{-1}~\rm{M_{\odot}}}: the median MARs based on the caustic mass profiles of the simulated clusters are unbiased and agree within 19%19\% with the median MARs based on the real mass profile of the clusters. The MAR of the CIRS and HeCS clusters increases with the mass and the redshift of the accreting cluster, which is in excellent agreement with the growth of clusters in the Λ\LambdaCDM model.Comment: 25 pages, 19 figures, 7 table

    The Oxidative Cleavage of 9,10-Dihydroxystearic Triglyceride with Oxygen and Cu Oxide-based Heterogeneous Catalysts

    Get PDF
    This paper deals with a new heterogeneous catalyst for the second step in the two-step oxidative cleavage of unsaturated fatty acids triglycerides derived from vegetable oil, a reaction aimed at the synthesis of azelaic and pelargonic acids. The former compound is a bio-monomer for the synthesis of polyesters; the latter, after esterification, is used in cosmetics and agrochemicals. The reaction studied offers an alternative to the currently used ozonization process, which has severe drawbacks in terms of safety and energy consumption. The cleavage was carried out with oxygen, starting from the glycol (dihydroxystearic acid triglyceride), the latter obtained by the dihydroxylation of oleic acid triglyceride. The catalysts used were based on Cu2+, in the form of either an alumina-supported oxide or a mixed, spinel-type oxide. The CuO/Al2O3 catalyst could be recovered, regenerated, and recycled, yielding promising results for further industrial exploitation

    From food waste to eco-friendly functionalized polymer composites: Investigation of orange peels as active filler

    Get PDF
    : The development of eco-friendly polymer composites with multifunctional properties aligns with the goals of the circular economy agenda, which aims to minimize waste and promote the sustainable use of resources by closing the loop of product life cycles. Eco-friendly polymer composites play a crucial role in achieving these objectives. The present work focuses on the preparation of fully biobased blends obtained by melt mixing a bio-polyester, poly(butylene succinate-co-adipate) (PBSA), with orange peels up to 20&nbsp;wt%, to yield active polymer composites. Orange peels, employed here as natural filler, are largely available from food wastes, they are rich in phenolic compounds and possess antioxidant activity as shown by the experimental tests carried out. The thermal stability of the formulated composites is almost unchanged by the filler addition, showing only a slight decrease of the crystallization temperatures and crystalline fraction within the composites. The mechanical properties of the compounds evidence an increase in the elastic modulus together with a decrease in the tensile strength, while the elongation at break remains almost constant. The incorporation of the natural filler enabled the integration of antioxidant and antibacterial properties, which were absent in the original pristine polymer

    The fate of bacteria in urban wastewater-irrigated peach tree: a seasonal evaluation from soil to canopy

    Get PDF
    Irrigation with wastewater can be a solution to preserve and mitigate freshwater demand, in particular during drought periods. Unfortunately, wastewater, although being treated at different levels, could be a carrier of human pathogens (e.g., E. coli) and potentially contaminate crops for human consumptions.This study investigated the seasonal microbiological concentrations, on soil, shoot and fruit tissues of potted peach trees, following two irrigation treatments: freshwater (FW) and secondary urban wastewater without the final disinfection treatment (SW). E. coli was only detected in SW irrigated soil, whereas total coliforms (TC) and total bacteria counts (TBC) were similar in both treatments throughout the season. EndophyticE. coli, Salmonella spp. and TC were not detected in shoot and fruit, but a higher presence of total bacteria (TBC) was observed in SW-irrigated tree compared to FWirrigated tree. In particular, SW shoots had a higher load compared to fruits, thus showing a potential effect of leaf transpiration, that promoted the transfer of water-borne bacteria from soil to the epigeal part (shoot). The adoption of low-quality SW (even above the microbiological limits of the European Regulation 2020/741 for wastewater re-use in agriculture), when a drip irrigation method is applied, could be a valid alternative to save fresh water without compromising fruit safety

    Efficacy and safety of flash glucose monitoring in patients with type 1 and type 2 diabetes: a systematic review and meta-analysis

    Get PDF
    INTRODUCTION: Flash glucose monitoring (FGM) is a factory-calibrated sensor-based technology for the measurement of interstitial glucose. We performed a systematic review and meta-analysis to assess its efficacy and safety in patients with type 1 and type 2 diabetes. RESEARCH DESIGN AND METHODS: PubMed, CENTRAL, Scopus and Web of Science were searched in July 2019. Twelve studies with a follow-up longer than 8 weeks, evaluating 2173 patients on prandial insulin, multiple daily insulin injections or continuous subcutaneous insulin infusion were included. The following data were extracted: HbA1c, time in range, time above 180 mg/dL, time below 70 mg/dL, frequency of hypoglycemic events, number of self-monitoring of blood glucose (SMBG) measurements, total daily insulin dose, patient-reported outcomes, adverse events, and discontinuation rate. A comparison with SMBG was conducted. RESULTS: FGM use was associated with a reduction in HbA1c (-0.26% (-3 mmol/mol); p=0.002) from baseline to the last available follow-up, which correlated with HbA1c levels at baseline (-0.4% (-4 mmol/mol) for each 1.0% (11 mmol/mol) of HbA1c above 7.2% (55 mmol/mol)). Also, a decrease in time below 70 mg/dL was found (-0.60 hours/day; p=0.04). Favorable findings in patient-reported outcomes and no device-related serious adverse events were reported. When compared with SMBG, FGM was characterized by no statistically different change in HbA1c (p=0.09), with lower number of SMBG measurements per day (-3.76 n/day; p&lt;0.001) and risk of discontinuation (relative risk=0.42; p=0.001). A limited number of studies, with a heterogeneous design and usually with a short-term follow-up and without specific training, were found. CONCLUSIONS: The present review provides evidence for the use of FGM as an effective strategy for the management of diabetes
    corecore