130 research outputs found

    Cellular kinetics of perivascular MSC precursors

    Get PDF
    Mesenchymal stem/stromal cells (MSCs) and MSC-like multipotent stem/progenitor cells have been widely investigated for regenerative medicine and deemed promising in clinical applications. In order to further improve MSC-based stem cell therapeutics, it is important to understand the cellular kinetics and functional roles of MSCs in the dynamic regenerative processes. However, due to the heterogeneous nature of typical MSC cultures, their native identity and anatomical localization in the body have remained unclear, making it difficult to decipher the existence of distinct cell subsets within the MSC entity. Recent studies have shown that several blood-vessel-derived precursor cell populations, purified by flow cytometry from multiple human organs, give rise to bona fide MSCs, suggesting that the vasculature serves as a systemic reservoir of MSC-like stem/progenitor cells. Using individually purified MSC-like precursor cell subsets, we and other researchers have been able to investigate the differential phenotypes and regenerative capacities of these contributing cellular constituents in the MSC pool. In this review, we will discuss the identification and characterization of perivascular MSC precursors, including pericytes and adventitial cells, and focus on their cellular kinetics: cell adhesion, migration, engraftment, homing, and intercellular cross-talk during tissue repair and regeneration. © 2013 William C. W. Chen et al

    Cellular kinetics of perivascular MSC precursors

    Get PDF
    Mesenchymal stem/stromal cells (MSCs) and MSC-like multipotent stem/progenitor cells have been widely investigated for regenerative medicine and deemed promising in clinical applications. In order to further improve MSC-based stem cell therapeutics, it is important to understand the cellular kinetics and functional roles of MSCs in the dynamic regenerative processes. However, due to the heterogeneous nature of typical MSC cultures, their native identity and anatomical localization in the body have remained unclear, making it difficult to decipher the existence of distinct cell subsets within the MSC entity. Recent studies have shown that several blood-vessel-derived precursor cell populations, purified by flow cytometry from multiple human organs, give rise to bona fide MSCs, suggesting that the vasculature serves as a systemic reservoir of MSC-like stem/progenitor cells. Using individually purified MSC-like precursor cell subsets, we and other researchers have been able to investigate the differential phenotypes and regenerative capacities of these contributing cellular constituents in the MSC pool. In this review, we will discuss the identification and characterization of perivascular MSC precursors, including pericytes and adventitial cells, and focus on their cellular kinetics: cell adhesion, migration, engraftment, homing, and intercellular cross-talk during tissue repair and regeneration. © 2013 William C. W. Chen et al

    The tunica adventitia of human arteries and veins as a source of mesenchymal stem cells

    Get PDF
    We previously demonstrated that human pericytes, which encircle capillaries and microvessels, give rise in culture to genuine mesenchymal stem cells (MSCs). This raised the question as to whether all MSC are derived from pericytes. Pericytes and other cells defined on differential expression of CD34, CD31, and CD146 were sorted from the stromal vascular fraction of human white adipose tissue. Besides pericytes, CD34+ CD31- CD146- CD45- cells, which reside in the outmost layer of blood vessels, the tunica adventitia, natively expressed MSC markers and gave rise in culture to clonogenic multipotent progenitors identical to standard bone marrow-derived MSC. Despite common MSC features and developmental properties, adventitial cells and pericytes retain distinct phenotypes and genotypes through culture. However, in the presence of growth factors involved in vascular remodeling, adventitial cells acquire a pericytes-like phenotype. In conclusion, we demonstrate the co-existence of 2 separate perivascular MSC progenitors: pericytes in capillaries and microvessels and adventitial cells around larger vessels

    Isolation and characterization of equine native MSC populations

    Get PDF
    Abstract Background In contrast to humans in which mesenchymal stem/stromal cell (MSC) therapies are still largely in the clinical trial phase, MSCs have been used therapeutically in horses for over 15 years, thus constituting a valuable preclinical model for humans. In human tissues, MSCs have been shown to originate from perivascular cells, namely pericytes and adventitial cells, which are identified by the presence of the cell surface markers CD146 and CD34, respectively. In contrast, the origin of MSCs in equine tissues has not been established, preventing the isolation and culture of defined cell populations in that species. Moreover, a comparison between perivascular CD146+ and CD34+ cell populations has not been performed in any species. Methods Immunohistochemistry was used to identify adventitial cells (CD34+) and pericytes (CD146+) and to determine their localization in relation to MSCs in equine tissues. Isolation of CD34+ (CD34+/CD146–/CD144–/CD45–) and CD146+ (CD146+/CD34–/CD144–/CD45–) cell fractions from equine adipose tissue was achieved by fluorescence-activated cell sorting. The isolated cell fractions were cultured and analyzed for the expression of MSC markers, using qPCR and flow cytometry, and for the ability to undergo trilineage differentiation. Angiogenic properties were analyzed in vivo using a chorioallantoic membrane (CAM) assay. Results Both CD34+ and CD146+ cells displayed typical MSC features, namely growth in uncoated tissue culture dishes, clonal growth when seeded at low density, expression of typical MSC markers, and multipotency shown by the capacity for trilineage differentiation. Of note, CD146+ cells were distinctly angiogenic compared with CD34+ and non-sorted cells (conventional MSCs), demonstrated by the induction of blood vessels in a CAM assay, expression of elevated levels of VEGFA and ANGPT1, and association with vascular networks in cocultures with endothelial cells, indicating that CD146+ cells maintain a pericyte phenotype in culture. Conclusion This study reports for the first time the successful isolation and culture of CD146+ and CD34+ cell populations from equine tissues. Characterization of these cells evidenced their distinct properties and MSC-like phenotype, and identified CD146+ cells as distinctly angiogenic, which may provide a novel source for enhanced regenerative therapies

    Prospective purification of perivascular presumptive mesenchymal stem cells from human adipose tissue:process optimization and cell population metrics across a large cohort of diverse demographics

    Get PDF
    BACKGROUND: Adipose tissue is an attractive source of mesenchymal stem cells (MSC) as it is largely dispensable and readily accessible through minimally invasive procedures such as liposuction. Until recently MSC could only be isolated in a process involving ex-vivo culture and their in-vivo identity, location and frequency remained elusive. We have documented that pericytes (CD45-, CD146+, and CD34-) and adventitial cells (CD45-, CD146-, CD34+) (collectively termed perivascular stem cells or PSC) represent native ancestors of the MSC, and can be prospectively purified using fluorescence activated cell sorting (FACS). In this study we describe an optimized protocol that aims to deliver pure, viable and consistent yields of PSC from adipose tissue. We analysed the frequency of PSC within adipose tissue, and the effect of patient and procedure based variables on this yield. METHODS: Within this twin centre study we analysed the adipose tissue of n = 131 donors using flow cytometry to determine the frequency of PSC and correlate this with demographic and processing data such as age, sex, BMI and cold storage time of the tissue. RESULTS: The mean number of stromal vascular fraction (SVF) cells from 100 ml of lipoaspirate was 34.4 million. Within the SVF, mean cell viability was 83 %, with 31.6 % of cells being haematopoietic (CD45+). Adventitial cells and pericytes represented 33.0 % and 8 % of SVF cells respectively. Therefore, a 200 ml lipoaspirate would theoretically yield 23.2 million viable prospectively purified PSC - sufficient for many reconstructive and regenerative applications. Minimal changes were observed in respect to age, sex and BMI suggesting universal potential application. CONCLUSIONS: Adipose tissue contains two anatomically and phenotypically discreet populations of MSC precursors – adventitial cells and pericytes – together referred to as perivascular stem cells (PSC). More than 9 million PSC per 100 ml of lipoaspirate can be rapidly purified to homogeneity using flow cytometry in clinically relevant numbers potentially circumventing the need for purification and expansion by culture prior to clinical use. The number and viability of PSC are minimally affected by patient age, sex, BMI or the storage time of the tissue, but the quality and consistency of yield can be significantly influenced by procedure based variables. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13287-016-0302-7) contains supplementary material, which is available to authorized users

    Nasal lavage natural killer cell function is suppressed in smokers after live attenuated influenza virus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Modified function of immune cells in nasal secretions may play a role in the enhanced susceptibility to respiratory viruses that is seen in smokers. Innate immune cells in nasal secretions have largely been characterized by cellular differentials using morphologic criteria alone, which have successfully identified neutrophils as a significant cell population within nasal lavage fluid (NLF) cells. However, flow cytometry may be a superior method to fully characterize NLF immune cells. We therefore characterized immune cells in NLF by flow cytometry, determined the effects of live attenuated influenza virus (LAIV) on NLF and peripheral blood immune cells, and compared responses in samples obtained from smokers and nonsmokers.</p> <p>Methods</p> <p>In a prospective observational study, we characterized immune cells in NLF of nonsmokers at baseline using flow cytometry and immunohistochemistry. Nonsmokers and smokers were inoculated with LAIV on day 0 and serial nasal lavages were collected on days 1-4 and day 9 post-LAIV. LAIV-induced changes of NLF cells were characterized using flow cytometry. Cell-free NLF was analyzed for immune mediators by bioassay. Peripheral blood natural killer (NK) cells from nonsmokers and smokers at baseline were stimulated <it>in vitro </it>with LAIV followed by flow cytometric and mediator analyses.</p> <p>Results</p> <p>CD45(+)CD56(-)CD16(+) neutrophils and CD45(+)CD56(+) NK cells comprised median 4.62% (range 0.33-14.52) and 23.27% (18.29-33.97), respectively, of non-squamous NLF cells in nonsmokers at baseline. LAIV did not induce changes in total NK cell or neutrophil percentages in either nonsmokers or smokers. Following LAIV inoculation, CD16(+) NK cell percentages and granzyme B levels increased in nonsmokers, and these effects were suppressed in smokers. LAIV inoculation enhanced expression of activating receptor NKG2D and chemokine receptor CXCR3 on peripheral blood NK cells from both nonsmokers and smokers <it>in vitro </it>but did not induce changes in CD16(+) NK cells or granzyme B activity in either group.</p> <p>Conclusions</p> <p>These data are the first to identify NK cells as a major immune cell type in the NLF cell population and demonstrate that mucosal NK cell cytotoxic function is suppressed in smokers following LAIV. Altered NK cell function in smokers suggests a potential mechanism that may enhance susceptibility to respiratory viruses.</p

    Perivascular-like cells contribute to the stability of the vascular network of osteogenic tissue formed from cell sheet-based constructs

    Get PDF
    In recent years several studies have been supporting the existence of a close relationship in terms of function and progeny between Mesenchymal Stem Cells (MSCs) and Pericytes. This concept has opened new perspectives for the application of MSCs in Tissue Engineering (TE), with special interest for the pre-vascularization of cell dense constructs. In this work, cell sheet technology was used to create a scaffold-free construct composed of osteogenic, endothelial and perivascular-like (CD146+) cells for improved in vivo vessel formation, maturation and stability. The CD146 pericyte-associated phenotype was induced from human bone marrow mesenchymal stem cells (hBMSCs) by the supplementation of standard culture medium with TGF-b1. Co-cultured cell sheets were obtained by culturing perivascular-like (CD146+) cells and human umbilical vein endothelial cells (HUVECs) on an hBMSCs monolayer maintained in osteogenic medium for 7 days. The perivascular-like (CD146+) cells and the HUVECs migrated and organized over the collagen-rich osteogenic cell sheet, suggesting the existence of cross-talk involving the co-cultured cell types. Furthermore the presence of that particular ECM produced by the osteoblastic cells was shown to be the key regulator for the singular observed organization. The osteogenic and angiogenic character of the proposed constructs was assessed in vivo. Immunohistochemistry analysis of the explants revealed the integration of HUVECs with the host vasculature as well as the osteogenic potential of the created construct, by the expression of osteocalcin. Additionally, the analysis of the diameter of human CD146 positive blood vessels showed a higher mean vessel diameter for the co-cultured cell sheet condition, reinforcing the advantage of the proposed model regarding blood vessels maturation and stability and for the in vitro pre-vascularization of TE constructs.Funding provided by Fundacao para a Ciencia e a Tecnologia project Skingineering (PTDC/SAU-OSM/099422/2008). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Mesenchymal stem cells: from experiment to clinic

    Get PDF
    There is currently much interest in adult mesenchymal stem cells (MSCs) and their ability to differentiate into other cell types, and to partake in the anatomy and physiology of remote organs. It is now clear these cells may be purified from several organs in the body besides bone marrow. MSCs take part in wound healing by contributing to myofibroblast and possibly fibroblast populations, and may be involved in epithelial tissue regeneration in certain organs, although this remains more controversial. In this review, we examine the ability of MSCs to modulate liver, kidney, heart and intestinal repair, and we update their opposing qualities of being less immunogenic and therefore tolerated in a transplant situation, yet being able to contribute to xenograft models of human tumour formation in other contexts. However, such observations have not been replicated in the clinic. Recent studies showing the clinical safety of MSC in several pathologies are discussed. The possible opposing powers of MSC need careful understanding and control if their clinical potential is to be realised with long-term safety for patients
    • 

    corecore