833 research outputs found

    Forward Modeling of Double Neutron Stars: Insights from Highly-Offset Short Gamma-Ray Bursts

    Full text link
    We present a detailed analysis of two well-localized, highly offset short gamma-ray bursts---GRB~070809 and GRB~090515---investigating the kinematic evolution of their progenitors from compact object formation until merger. Calibrating to observations of their most probable host galaxies, we construct semi-analytic galactic models that account for star formation history and galaxy growth over time. We pair detailed kinematic evolution with compact binary population modeling to infer viable post-supernova velocities and inspiral times. By populating binary tracers according to the star formation history of the host and kinematically evolving their post-supernova trajectories through the time-dependent galactic potential, we find that systems matching the observed offsets of the bursts require post-supernova systemic velocities of hundreds of kilometers per second. Marginalizing over uncertainties in the stellar mass--halo mass relation, we find that the second-born neutron star in the GRB~070809 and GRB~090515 progenitor systems received a natal kick of ≳200 km s−1\gtrsim 200~\mathrm{km\,s}^{-1} at the 78\% and 91\% credible levels, respectively. Applying our analysis to the full catalog of localized short gamma-ray bursts will provide unique constraints on their progenitors and help unravel the selection effects inherent to observing transients that are highly offset with respect to their hosts.Comment: 18 pages, 7 figures, 1 table. ApJ, in pres

    You Can Always Get What You Want: The Impact of Prior Assumptions on Interpreting GW190412

    Get PDF
    GW190412 is the first observation of a black hole binary with definitively unequal masses. GW190412's mass asymmetry, along with the measured positive effective inspiral spin, allowed for inference of a component black hole spin: the primary black hole in the system was found to have a dimensionless spin magnitude between 0.17 and 0.59 (90% credible range). We investigate how the choice of priors for the spin magnitudes and tilts of the component black holes affect the robustness of parameter estimates for GW190412, and report Bayes factors across a suite of prior assumptions. Depending on the waveform family used to describe the signal, we find either marginal to moderate (2:1-7:1) or strong (≳ 20:1) support for the primary black hole being spinning compared to cases where only the secondary is allowed to have spin. We show how these choices influence parameter estimates, and find the asymmetric masses and positive effective inspiral spin of GW190412 to be qualitatively, but not quantitatively, robust to prior assumptions. Our results highlight the importance of both considering astrophysically-motivated or population-based priors in interpreting observations, and considering their relative support from the data

    You Can't Always Get What You Want: The Impact of Prior Assumptions on Interpreting GW190412

    Get PDF
    GW190412 is the first observation of a black hole binary with definitively unequal masses. GW190412's mass asymmetry, along with the measured positive effective inspiral spin, allowed for inference of a component black hole spin: the primary black hole in the system was found to have a dimensionless spin magnitude between 0.17 and 0.59 (90% credible range). We investigate how the choice of priors for the spin magnitudes and tilts of the component black holes affect the robustness of parameter estimates for GW190412, and report Bayes factors across a suite of prior assumptions. Depending on the waveform family used to describe the signal, we find either marginal to moderate (2:1-6:1) or strong (≳\gtrsim 20:1) support for the primary black hole being spinning compared to cases where only the secondary is allowed to have spin. We show how these choices influence parameter estimates, and find the asymmetric masses and positive effective inspiral spin of GW190412 to be qualitatively, but not quantitatively, robust to prior assumptions. Our results highlight the importance of both considering astrophysically motivated or population-based priors in interpreting observations and considering their relative support from the data.Comment: 12 pages, 2 figures, 1 table, published in ApJ

    New Candidate Interstellar Particle in Stardust IS Aerogel Collector: Analysis by STXM and Ptychography

    Get PDF
    The Stardust Interstellar Preliminary Examination (ISPE) reported in 2014 the discovery of 7 probable contemporary interstellar (IS) particles captured in Stardust IS Collector aerogel and foils. The ISPE reports represented work done over 6 years by more than 60 scientists and >30,000 volunteers, which emphasizes the challenge identifying and analyzing Stardust IS samples was far beyond the primary Stardust cometary collection. We present a new potentially interstellar particle resulting from a continuation of analyses of the IS aerogel collection

    Black Hole Genealogy: Identifying Hierarchical Mergers with Gravitational Waves

    Get PDF
    In dense stellar environments, the merger products of binary black hole mergers may undergo additional mergers. These hierarchical mergers are naturally expected to have higher masses than the first generation of black holes made from stars. The components of hierarchical mergers are expected to have significant characteristic spins, imprinted by the orbital angular momentum of the previous mergers. However, since the population properties of first-generation black holes are uncertain, it is difficult to know if any given merger is first-generation or hierarchical. We use observations of gravitational waves to reconstruct the binary black hole mass and spin spectrum of a population including the possibility of hierarchical mergers. We employ a phenomenological model that captures the properties of merging binary black holes from simulations of globular clusters. Inspired by recent work on the formation of low-spin black holes, we include a zero-spin subpopulation. We analyze binary black holes from LIGO and Virgo's first two observing runs, and find that this catalog is consistent with having no hierarchical mergers. We find that the most massive system in this catalog, GW170729, is mostly likely a first-generation merger, having a 4% probability of being a hierarchical merger assuming a 5 × 10⁔ M_⊙ globular cluster mass. Using our model, we find that 99% of first-generation black holes in coalescing binaries have masses below 44 M_⊙, and the fraction of binaries with near-zero component spins is less than 0.16 (90% probability). Upcoming observations will determine if hierarchical mergers are a common source of gravitational waves

    Classifying the unknown: discovering novel gravitational-wave detector glitches using similarity learning

    Get PDF
    The observation of gravitational waves from compact binary coalescences by LIGO and Virgo has begun a new era in astronomy. A critical challenge in making detections is determining whether loud transient features in the data are caused by gravitational waves or by instrumental or environmental sources. The citizen-science project \emph{Gravity Spy} has been demonstrated as an efficient infrastructure for classifying known types of noise transients (glitches) through a combination of data analysis performed by both citizen volunteers and machine learning. We present the next iteration of this project, using similarity indices to empower citizen scientists to create large data sets of unknown transients, which can then be used to facilitate supervised machine-learning characterization. This new evolution aims to alleviate a persistent challenge that plagues both citizen-science and instrumental detector work: the ability to build large samples of relatively rare events. Using two families of transient noise that appeared unexpectedly during LIGO's second observing run (O2), we demonstrate the impact that the similarity indices could have had on finding these new glitch types in the Gravity Spy program

    Elastic Spin Relaxation Processes in Semiconductor Quantum Dots

    Full text link
    Electron spin decoherence caused by elastic spin-phonon processes is investigated comprehensively in a zero-dimensional environment. Specifically, a theoretical treatment is developed for the processes associated with the fluctuations in the phonon potential as well as in the electron procession frequency through the spin-orbit and hyperfine interactions in the semiconductor quantum dots. The analysis identifies the conditions (magnetic field, temperature, etc.) in which the elastic spin-phonon processes can dominate over the inelastic counterparts with the electron spin-flip transitions. Particularly, the calculation results illustrate the potential significance of an elastic decoherence mechanism originating from the intervalley transitions in semiconductor quantum dots with multiple equivalent energy minima (e.g., the X valleys in SiGe). The role of lattice anharmonicity and phonon decay in spin relaxation is also examined along with that of the local effective field fluctuations caused by the stochastic electronic transitions between the orbital states. Numerical estimations are provided for typical GaAs and Si-based quantum dots.Comment: 57 pages, 14 figure
    • 

    corecore