10 research outputs found

    Patients with Schizophrenia have a Reduced Neural Response to Both Unpredictable and Predictable Primary Reinforcers

    No full text
    One prevalent theory of learning states that dopamine neurons signal mismatches between expected and actual outcomes, called temporal difference errors (TDEs). Evidence indicates that dopamine system dysfunction plays a role in negative symptoms of schizophrenia (SZ), including avolition and anhedonia. As such, we predicted that brain responses to TDEs in dopamine midbrain nuclei and target areas would be abnormal in SZ. Eighteen clinically-stable patients with chronic schizophrenia and 18 controls participated in an fMRI study, which used a passive conditioning task. In the task, the delivery of a small amount of juice followed a light stimulus by exactly 6 seconds on approximately 75% of 78 total trials, and was further delayed by 4–7 s on the remaining trials. The delayed juice delivery was designed to elicit the two types of TDE signals, associated with the recognition that a reward was omitted at the expected time, and delivered at an unexpected time. Main effects of TDE valence and group differences in the positive – negative TDE contrast (unexpected juice deliveries – juice omissions) were assessed through whole-brain and regions-of-interest (ROI) analyses. Main effects of TDE valence were observed for the entire sample in the midbrain, left putamen, left cerebellum, and primary gustatory cortex, bilaterally. Whole-brain analyses revealed group differences in the positive – negative TDE contrast in the right putamen and left precentral gyrus, while ROI analyses revealed additional group differences in the midbrain, insula and parietal operculum, on the right, the putamen and cerebellum, on the left, and the frontal operculum, bilaterally. Further, these group differences were generally driven by attenuated responses in patients to positive TDEs (unexpected juice deliveries), whereas responses to negative TDEs (unexpected juice omissions) were largely intact. Patients also showed reductions in responses to juice deliveries on standard trials, and more blunted reinforcer responses in the left putamen corresponded to higher ratings of avolition. These results provide evidence that SZ patients show abnormal brain responses associated with the processing of a primary reinforcer, which may be a source of motivational deficits

    Abnormal asymmetries in subcortical brain volume in schizophrenia

    No full text
    Subcortical structures, which include the basal ganglia and parts of the limbic system, have key roles in learning, motor control and emotion, but also contribute to higher-order executive functions. Prior studies have reported volumetric alterations in subcortical regions in schizophrenia. Reported results have sometimes been heterogeneous, and few large-scale investigations have been conducted. Moreover, few large-scale studies have assessed asymmetries of subcortical volumes in schizophrenia. Here, as a work completely independent of a study performed by the ENIGMA consortium, we conducted a large-scale multisite study of subcortical volumetric differences between patients with schizophrenia and controls. We also explored the laterality of subcortical regions to identify characteristic similarities and differences between them. T1-weighted images from 1680 healthy individuals and 884 patients with schizophrenia, obtained with 15 imaging protocols at 11 sites, were processed with FreeSurfer. Group differences were calculated for each protocol and meta-analyzed. Compared with controls, patients with schizophrenia demonstrated smaller bilateral hippocampus, amygdala, thalamus and accumbens volumes as well as intracranial volume, but larger bilateral caudate, putamen, pallidum and lateral ventricle volumes. We replicated the rank order of effect sizes for subcortical volumetric changes in schizophrenia reported by the ENIGMA consortium. Further, we revealed leftward asymmetry for thalamus, lateral ventricle, caudate and putamen volumes, and rightward asymmetry for amygdala and hippocampal volumes in both controls and patients with schizophrenia. Also, we demonstrated a schizophrenia-specific leftward asymmetry for pallidum volume. These findings suggest the possibility of aberrant laterality in neural pathways and connectivity patterns related to the pallidum in schizophrenia

    Cognitive Training for Impaired Neural Systems in Neuropsychiatric Illness

    No full text
    corecore