1,145,561 research outputs found

    A Robust Image Hashing Algorithm Resistant Against Geometrical Attacks

    Get PDF
    This paper proposes a robust image hashing method which is robust against common image processing attacks and geometric distortion attacks. In order to resist against geometric attacks, the log-polar mapping (LPM) and contourlet transform are employed to obtain the low frequency sub-band image. Then the sub-band image is divided into some non-overlapping blocks, and low and middle frequency coefficients are selected from each block after discrete cosine transform. The singular value decomposition (SVD) is applied in each block to obtain the first digit of the maximum singular value. Finally, the features are scrambled and quantized as the safe hash bits. Experimental results show that the algorithm is not only resistant against common image processing attacks and geometric distortion attacks, but also discriminative to content changes

    On significance of VLBI/Gaia position offsets

    Full text link
    We have cross matched the Gaia Data Release 1 secondary dataset that contains positions of 1.14 billion objects against the most complete to date catalogue of VLBI positions of 11.4 thousand sources, almost exclusively active galactic nuclei. We found 6,064 matches, i.e. 53% radio objects. The median uncertainty of VLBI positions is a factor of 4 smaller than the median uncertainties of their optical counterparts. Our analysis shows that the distribution of normalized arc lengths significantly deviates from Rayleigh shape with an excess of objects with small normalized arc lengths and with a number of outliers. We found that 6% matches have radio optical offsets significant at 99% confidence level. Therefore, we conclude there exists a population of objects with genuine offsets between centroids of radio and optical emission.Comment: 6 pages, 6 figures, 3 tables; accepted by MNRAS Letters; full electronic versions of 2 tables are available from the preprint source; text and tables are updated, a figure adde

    A More Precise Extraction of |V_{cb}| in HQEFT of QCD

    Full text link
    The more precise extraction for the CKM matrix element |V_{cb}| in the heavy quark effective field theory (HQEFT) of QCD is studied from both exclusive and inclusive semileptonic B decays. The values of relevant nonperturbative parameters up to order 1/m^2_Q are estimated consistently in HQEFT of QCD. Using the most recent experimental data for B decay rates, |V_{cb}| is updated to be |V_{cb}| = 0.0395 \pm 0.0011_{exp} \pm 0.0019_{th} from B\to D^{\ast} l \nu decay and |V_{cb}| = 0.0434 \pm 0.0041_{exp} \pm 0.0020_{th} from B\to D l \nu decay as well as |V_{cb}| = 0.0394 \pm 0.0010_{exp} \pm 0.0014_{th} from inclusive B\to X_c l \nu decay.Comment: 7 pages, revtex, 4 figure

    Lifetime Difference and Endpoint effect in the Inclusive Bottom Hadron Decays

    Full text link
    The lifetime differences of bottom hadrons are known to be properly explained within the framework of heavy quark effective field theory(HQEFT) of QCD via the inverse expansion of the dressed heavy quark mass. In general, the spectrum around the endpoint region is not well behaved due to the invalidity of 1/mQ1/m_Q expansion near the endpoint. The curve fitting method is adopted to treat the endpoint behavior. It turns out that the endpoint effects are truly small and the explanation on the lifetime differences in the HQEFT of QCD is then well justified. The inclusion of the endpoint effects makes the prediction on the lifetime differences and the extraction on the CKM matrix element Vcb|V_{cb}| more reliable.Comment: 11 pages, Revtex, 10 figures, 6 tables, published versio

    Paradoxes of the Aharonov-Bohm and the Aharonov-Casher effects

    Full text link
    For a believer in locality of Nature, the Aharonov-Bohm effect and the Aharonov-Casher effect are paradoxes. I discuss these and other Aharonov's paradoxes and propose a local explanation of these effects. If the solenoid in the Aharonov-Bohm effect is treated quantum mechanically, the effect can be explained via local interaction between the field of the electron and the solenoid. I argue that the core of the Aharonov-Bohm and the Aharonov-Casher effects is that of quantum entanglement: the quantum wave function describes all systems together.Comment: To be published in Yakir Aharonov 80th birthday Festschrif
    corecore