3,722 research outputs found

    Observation of Fermi-energy dependent unitary impurity resonances in a strong topological insulator Bi_2Se_3 with scanning tunneling spectroscopy

    Get PDF
    Scanning tunneling spectroscopic studies of Bi_2Se_3 epitaxial films on Si (111) substrates reveal highly localized unitary impurity resonances associated with non-magnetic quantum impurities. The strength of the resonances depends on the energy difference between the Fermi level (E_F) and the Dirac point (E_D) and diverges as E_F approaches E_D. The Dirac-cone surface state of the host recovers within ~ 2Ă… spatial distance from impurities, suggesting robust topological protection of the surface state of topological insulators against high-density impurities that preserve time reversal symmetry

    A regularized smoothing Newton method for symmetric cone complementarity problems

    Get PDF
    This paper extends the regularized smoothing Newton method in vector complementarity problems to symmetric cone complementarity problems (SCCP), which includes the nonlinear complementarity problem, the second-order cone complementarity problem, and the semidefinite complementarity problem as special cases. In particular, we study strong semismoothness and Jacobian nonsingularity of the total natural residual function for SCCP. We also derive the uniform approximation property and the Jacobian consistency of the Chen–Mangasarian smoothing function of the natural residual. Based on these properties, global and quadratical convergence of the proposed algorithm is established

    Scanning Tunnelling Spectroscopic Studies of Dirac Fermions in Graphene and Topological Insulators

    Get PDF
    We report novel properties derived from scanning tunnelling spectroscopic (STS) studies of Dirac fermions in graphene and the surface state (SS) of a strong topological insulator (STI), Bi_2Se_3. For mono-layer graphene grown on Cu by chemical vapour deposition (CVD), strain-induced scalar and gauge potentials are manifested by the charging effects and the tunnelling conductance peaks at quantized energies, respectively. Additionally, spontaneous time-reversal symmetry breaking is evidenced by the alternating anti-localization and localization spectra associated with the zero-mode of two sublattices while global time-reversal symmetry is preserved under the presence of pseudo-magnetic fields. For Bi_2Se_3 epitaxial films grown on Si(111) by molecular beam epitaxy (MBE), spatially localized unitary impurity resonances with sensitive dependence on the energy difference between the Fermi level and the Dirac point are observed for samples thicker than 6 quintuple layers (QL). These findings are characteristic of the SS of a STI and are direct manifestation of strong topological protection against impurities. For samples thinner than 6-QL, STS studies reveal the openup of an energy gap in the SS due to overlaps of wave functions between the surface and interface layers. Additionally, spin-preserving quasiparticle interference wave-vectors are observed, which are consistent with the Rashba-like spin-orbit splitting

    A Computational Study of the Weak Galerkin Method for Second-Order Elliptic Equations

    Full text link
    The weak Galerkin finite element method is a novel numerical method that was first proposed and analyzed by Wang and Ye for general second order elliptic problems on triangular meshes. The goal of this paper is to conduct a computational investigation for the weak Galerkin method for various model problems with more general finite element partitions. The numerical results confirm the theory established by Wang and Ye. The results also indicate that the weak Galerkin method is efficient, robust, and reliable in scientific computing.Comment: 19 page

    Quadratic convergence of Smoothing Newton's method for 0/1 loss optimization

    Get PDF
    It has been widely recognized that the 0/1 loss function is one of the most natural choices for modeling classification errors, and it has a wide range of applications including support vector machines and 1-bit compressed sensing. Due to the combinatorial nature of the 0/1 loss function, methods based on convex relaxations or smoothing approximations have dominated the existing research and are often able to provide approximate solutions of good quality. However, those methods are not optimizing the 0/1 loss function directly and hence no optimality has been established for the original problem. This paper aims to study the optimality conditions of the 0/1 function minimization, and for the first time to develop Newton's method that directly optimizes the 0/1 function with a local quadratic convergence under reasonable conditions. Extensive numerical experiments demonstrate its superior performance as one would expect from Newton-type methods. Extensive numerical experiments demonstrate its superior performance as one would expect from Newton-type methods

    Quadratic convergence of smoothing Newton's method for 0/1 loss optimization

    Get PDF
    It has been widely recognized that the 0/1-loss function is one of the most natural choices for modelling classification errors, and it has a wide range of applications including support vector machines and 1-bit compressed sensing. Due to the combinatorial nature of the 0/1 loss function, methods based on convex relaxations or smoothing approximations have dominated the existing research and are often able to provide approximate solutions of good quality. However, those methods are not optimizing the 0/1 loss function directly and hence no optimality has been established for the original problem. This paper aims to study the optimality conditions of the 0/1 function minimization and for the first time to develop Newton's method that directly optimizes the 0/1 function with a local quadratic convergence under reasonable conditions. Extensive numerical experiments demonstrate its superior performance as one would expect from Newton-type methods

    Sparse recovery on Euclidean Jordan algebras

    Get PDF
    This paper is concerned with the problem of sparse recovery on Euclidean Jordan algebra (SREJA), which includes the sparse signal recovery problem and the low-rank symmetric matrix recovery problem as special cases. We introduce the notions of restricted isometry property (RIP), null space property (NSP), and s-goodness for linear transformations in s-SREJA, all of which provide sufficient conditions for s-sparse recovery via the nuclear norm minimization on Euclidean Jordan algebra. Moreover, we show that both the s-goodness and the NSP are necessary and sufficient conditions for exact s-sparse recovery via the nuclear norm minimization on Euclidean Jordan algebra. Applying these characteristic properties, we establish the exact and stable recovery results for solving SREJA problems via nuclear norm minimization
    • …
    corecore