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Abstract. This paper extends the regularized smoothing Newton method in vector complemen-
tarity problems to symmetric cone complementarity problems (SCCP), which includes the nonlinear
complementarity problem, the second-order cone complementarity problem, and the semidefinite
complementarity problem as special cases. In particular, we study strong semismoothness and Ja-
cobian nonsingularity of the total natural residual function for SCCP. We also derive the uniform
approximation property and the Jacobian consistency of the Chen–Mangasarian smoothing func-
tion of the natural residual. Based on these properties, global and quadratical convergence of the
proposed algorithm is established.
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1. Introduction. We are interested in the following symmetric cone comple-
mentarity problem (SCCP): Find vectors x, y ∈ J such that

(1.1) x ∈ K, y = F (x) ∈ K, 〈x, y〉 = 0,

where J is an n-dimensional real Euclidean space, A := (J , 〈·, ·〉, ◦) is a Euclidean
Jordan algebra, K is a symmetric cone in A (see section 2), and F : J → J is a con-
tinuously differentiable mapping. Problem (1.1) includes the semidefinite complemen-
tarity problem (SDCP), the second-order cone complementarity problem (SOCCP),
and the nonlinear complementarity problem (NCP) as special cases. The SCCP has
wide applications; in particular, it may arise from the KKT system of a nonlinear
optimization problem. The SCCP has been the focal point of some recent research;
see, e.g., [12, 13, 14, 22, 23, 29, 33, 37].

We intend to design an algorithm for SCCPs, which is called the regularized
smoothing Newton method. In the setting of NCP, various regularized smoothing
methods have been tested, which, in addition to their simplicity of implementation,
have the advantage of being able to solve some ill-posed problems. Recently, there are
some papers studying the smoothing Newton methods with or without regularization
for SOCCP and SDCP; see, e.g., [3, 4, 5, 6, 7, 11, 15, 16, 32, 35]. These papers either
address the case of SOCCP or that of SDCP, but to our knowledge, there are no
discussions on this type of algorithms under the general framework of SCCP.

In this paper, with the help of the Euclidean Jordan algebra, we analyze the
strong semismoothness and Jacobian nonsingularity of a natural residual function
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REGULARIZED SMOOTHING METHOD FOR SCCP 1029

(the so-called total NR-function). We also show the level-boundedness of the natural
merit function of the total NR-function for SCCP under monotonicity and strict fea-
sibility assumptions. We then construct the Chen–Mangasarian smoothing function
of the natural residual for SCCP. Our work provides a theoretical and computational
framework for solving general nonlinear SCCP. In particular, we derive the uniform
approximation property and the Jacobian consistency of this smoothing function.
These properties form a basis for establishing quadratic convergence of Newton-type
algorithms. Finally, we state a globally and quadratically convergent algorithm for
solving monotone SCCP that was originated from a similar algorithm of Hayashi,
Yamashita, and Fukushima [15] for SOCCP. Many analytic tools we used are taken
from the recent work by Sun and Sun [30], in which the differential properties of the
Löwner’s operator and spectral functions are studied in the space of Euclidean Jordan
algebras.

This paper is organized as follows. In section 2, we briefly describe Euclidean
Jordan algebra and some of its properties used in our analysis. We also derive new
results on the Jacobian and the Clarke generalized Jacobian of Löwner operators. In
section 3, we introduce and characterize the total NR-function for SCCP. In section 4,
we present the Chen–Mangasarian smoothing function in the context of SCCPs and
discuss its properties. In section 5, we introduce the regularized smoothing Newton
method for SCCP and discuss its convergence.

The following notations will be used throughout this paper. Let X and Y be two
finite dimensional real Euclidean spaces. For a given set S ⊆ X , intS and convS
denote the interior and convex hull of S, respectively. Let dist(a, S) be min{‖a− b‖ :
b ∈ S} for a ∈ X , where ‖ · ‖ is the norm on X induced by the inner product 〈·, ·〉. We
write x 	K y (respectively, x 
K y) to mean x − y ∈ K (respectively, x − y ∈ intK)
for vectors x, y ∈ J . Also, we write A 	 B (A 
 B) to mean A − B being positive
semidefinite (positive definite) for operators A and B from J into itself. Let I be the
identity operator, i.e., Ix = x for all x ∈ J . We say that the operator A is invertible
(or nonsingular) if the equation Ax = 0 has a unique solution x = 0. For an operator
A, AT denotes the adjoint operator of A.

2. Preliminaries.

2.1. Euclidean Jordan algebras. We give a brief introduction to Euclidean
Jordan algebras. Details on Euclidean Jordan algebras can be found in Koecher’s
lecture notes [19] and the monograph by Faraut and Korányi [10].

A Euclidean Jordan algebra (EJA) is a triple (J , 〈·, ·〉, ◦) Δ= A, where (J , 〈·, ·〉) is
a real n-dimensional inner product space and (x, y) �→ x◦ y : J ×J → J is a bilinear
mapping which satisfies the following conditions:

(i) x ◦ y = y ◦ x for all x, y ∈ J ,
(ii) x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y) for all x, y ∈ J where x2 := x ◦ x,
(iii) 〈x ◦ y, z〉 = 〈x, y ◦ z〉 for all x, y, z ∈ J .

We call x ◦ y the Jordan product of x and y. In general, the Jordan product is not
associative; i.e., (x ◦ y) ◦ z �= x ◦ (y ◦ z) for all x, y, z ∈ J . In addition, we assume that
there exists an element e (called the identity element) such that x ◦ e = e ◦ x = x for
all x ∈ J . The following are some basic facts about Euclidean Jordan algebras.

• Given a Euclidean Jordan algebra A, define the set of squares as K := {x2 :
x ∈ J }. From Theorem III 2.1 in [10], K is a symmetric cone in A. In
other words, K is a self-dual closed convex cone, and for any two elements
x, y ∈ intK, there exists an invertible linear transformation Γ : J → J such
that Γ(K) = K and Γ(x) = y.
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1030 LINGCHEN KONG, JIE SUN, AND NAIHUA XIU

• For x ∈ J , let m := m(x) be the smallest positive integer such that the set
{e, x, x2, . . . , xm} is linearly dependent. Then m is said to be the degree of x,
which is denoted by deg(x).

• The rank of A denoted by rk(A) is defined as rk(A) Δ= max{deg(x) : x ∈ J }.
Let dim(J ) denote the dimension of J . Obviously, rk(A) ≤ dim(J ).

• An element c ∈ J is an idempotent if c2 = c �= 0. An idempotent element is
primitive if it cannot be written as a sum of two idempotents.

• A complete system of orthogonal idempotents in A is a finite set {c1, c2, . . . , ck}
of idempotents where ci ◦ cj = 0 for all i �= j, and c1 + c2 + · · · + ck = e.

• A Jordan frame in A is a complete system of orthogonal primitive idempo-
tents. The number of elements of any Jordan frame equals the positive integer
rk(A).

Example 2.1. Let Rn denote the space of n-dimensional real column vectors,
and Rn

+ be the nonnegative orthant. Consider Rn with the (usual) inner product
and Jordan product defined, respectively, by 〈x, y〉 :=

∑n
i=1 xiyi and x ◦ y := x ∗ y,

where xi denotes the ith component of x, etc., and x ∗ y denotes the componentwise
product of vectors x and y. Then (Rn, 〈·, ·〉, ∗) forms a Euclidean Jordan algebra with
rk((Rn, 〈·, ·〉, ∗)) = dim(Rn) = n and Rn

+ as its cone of squares. The identity element
is the n-vector of ones, and the set {e1, e2, . . . , en} is the unique Jordan frame where
ei is the ith coordinate vector for i ∈ {1, 2, . . . , n}.

Example 2.2. Consider Rn(n ≥ 2) where any x is written as x = (x1, x
T
2 )T with

x1 ∈ R and x2 ∈ Rn−1. The inner product is the same as usual, and the Jordan
product is defined by

x ◦ y =
(

x1

x2

)
◦
(

y1

y2

)
:=
( 〈x, y〉

x1y2 + y1x2

)
.

Then Λn := (Rn, 〈·, ·〉, ◦) forms a Euclidean Jordan algebra, and its cone of squares
(Lorentz cone or second-order cone) is specified by Λn

+ := {(x1, x
T
2 )T : x1 ≥ ‖x2‖},

where ‖·‖ denotes the 2-norm. The identity element in Λn is e =
(
1
0

)
. The set {c1, c2}

is a Jordan frame given by ci = 1
2

(
1

(−1)i ω

)
for i = 1, 2 with any ω ∈ Rn−1 satisfying

‖ω‖ = 1.
Example 2.3. Let Sn denote the set of all n×n real symmetric matrices with the

inner product and Jordan product defined, respectively, by 〈X, Y 〉 := Trace(XY ) and
X ◦ Y := (XY + Y X)/2. Thus (Sn, 〈·, ·〉, ◦) forms a Euclidean Jordan algebra, and
its cone of squares Sn

+ is the set of all positive semidefinite symmetric matrices. The
identity element in this setting is the identity matrix E. The set {E1, E2, . . . , En} is
a Jordan frame where Ei is the diagonal matrix with one in the ii-entry and zeros
elsewhere for i ∈ {1, 2, . . . , n}.

We now review the following spectral decomposition theorem of an element in a
Euclidean Jordan algebra.

Theorem 2.4. (Spectral Decomposition Type II (Theorem III.1.2, [10])) Let A be
a Euclidean Jordan algebra with rank r. Then for x ∈ J there exist a Jordan frame
{c1, c2, . . . , cr} and real numbers λ1(x), λ2(x), . . . , λr(x) such that

x = λ1(x)c1 + λ2(x)c2 + · · · + λr(x)cr .(2.1)

The numbers λi(x) (i = 1, 2, . . . , r) are the eigenvalues of x. We call (2.1) the spectral
decomposition (or the spectral expansion) of x.

Note that the Jordan frame {c1, c2, . . . , cr} in (2.1) depends on x. We do not write
this dependence explicitly for simplicity of notation. (The same for {b1, b2, . . . , br̄}
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REGULARIZED SMOOTHING METHOD FOR SCCP 1031

below.) Let σ(x) be the set of all distinct eigenvalues of x. Then σ(x) contains at
least one element and at most r. For each μi(x) ∈ σ(x), denote Ni(x) := {j : λj(x) =
μi(x)} and bi

Δ=
∑

j∈Ni(x) cj . Then the set {bi : μi(x) ∈ σ(x)} is a complete system of
orthogonal idempotents, and its uniqueness is guaranteed by Theorem III.1.1 in [10].
Let r̄ be the number of elements in this set. We then have the spectral decomposition
of type I stated in [10]; i.e.,

x = μ1(x)b1 + μ2(x)b2 + · · · + μr̄(x)br̄.

Next, we recall the Peirce decomposition theorem on the space J , where a Jordan
frame {c1, c2, . . . , cr} is fixed beforehand. In this case, define the following subspaces

Jii
Δ= {x ∈ J : x ◦ ci = x} and Jij

Δ=
{

x ∈ J : x ◦ ci =
1
2
x = x ◦ cj

}
, i �= j,(2.2)

for i, j ∈ {1, 2, . . . , r}. In the second-order cone (SOC) case, we have J12
Δ= {x ∈ Rn :

x1 = 0, 〈x2, w〉 = 0}, where w is characterized by the Jordan frame as in Example 2.2.
Theorem 2.5 (Theorem IV.2.1, [10]). Let {c1, c2, . . . , cr} be a given Jordan

frame in a Euclidean Jordan algebra A of rank r. Then J is the orthogonal direct
sum of spaces Jij (i ≤ j). Furthermore,

(i) Jij ◦ Jij ⊆ Jii + Jjj ;
(ii) Jij ◦ Jjk ⊆ Jik, if i �= k;
(iii) Jij ◦ Jkl = {0}, if {i, j} ∩ {k, l} = Ø.
For each x ∈ J , we define the Lyapunov transformation L(x) : J → J by L(x)y =

x ◦ y for all y ∈ J , which is a symmetric operator in the sense that 〈L(x)y, z〉 =
〈y, L(x)z〉 for all y, z ∈ J . Meanwhile, the operator Q(x) Δ= 2L2(x) − L(x2) is called
the quadratic representation of x. We say two elements x, y ∈ J operator commute
if L(x)L(y) = L(y)L(x). Lemma X.2.2 in [10] gives the following characterization of
operator commutativity.

Theorem 2.6. Two elements x and y of a Euclidean Jordan algebra of rank r
are operator commute if and only if they share a common Jordan frame.

Thus, for a given Jordan frame {c1, c2, . . . , cr}, it is easy to see that ci, cj operator
commute and L(ci)L(cj) = L(cj)L(ci) for any i, j ∈ {1, 2, . . . , r}. So do bi and bj for
any i, j ∈ {1, 2, . . . , r̄}.

2.2. The Jacobian of Löwner operators. We review differentiability and
semismoothness of a vector-valued function, which was called the Löwner operator
by Sun and Sun [30] in recognition of Löwner’s contribution [21]. We also present
some new results on the Jacobian and the Clarke generalized Jacobian of the Löwner
operator, which are basic and useful in the subsequent analysis.

Definition 2.7. Let x =
∑r

j=1 λj(x)cj and g : R → R be a real-valued function.
We define the Löwner operator (function) G : J → J as

G(x) Δ=
r∑

j=1

g(λj(x))cj = g(λ1(x))c1 + g(λ2(x))c2 + · · · + g(λr(x))cr .(2.3)

When g(t) = t+ = max{0, t}(t ∈ R), this becomes the metric projection operator

PK(x) Δ= (λ1(x))+c1 + (λ2(x))+c2 + · · · + (λr(x))+cr(2.4)

onto the symmetric cone K. Note that x ∈ K (respectively, x ∈ intK) if and only
if λi(x) ≥ 0 (respectively, λi(x) > 0) (i = 1, 2, . . . , r). For any x ∈ K, we define√

x
Δ=
∑r

j=1

√
λj(x)cj for x ∈ K.
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1032 LINGCHEN KONG, JIE SUN, AND NAIHUA XIU

We consider the differentiability of the Löwner operator G(·). Suppose that g is
differentiable at τi, i = 1, 2, . . . , r. Define the first divided difference g[1](τ) of g at
τ

Δ= (τ1, τ2, . . . , τr)T ∈ Rr as the r × r symmetric matrix with the ijth entry given by

[g[1](τ)]ij = [τi, τj ]g
Δ=

⎧⎨
⎩

g(τi) − g(τj)
τi − τj

if τi �= τj ,

g′(τi) if τi = τj ,

i, j = 1, 2, . . . , r.(2.5)

A direct implication of Theorem 3.2 in [30] is the following property of the Jacobian
of the Löwner operator G(·).

Theorem 2.8. Let x =
∑r

j=1 λj(x)cj =
∑r̄

i=1 μi(x)bi. Then, G(·) is (continu-
ously) differentiable at x if and only if for each j ∈ {1, 2, . . . , r}, g is (continuously)
differentiable at λj(x). In this case, the Jacobian ∇G(x) is given by

∇G(x) = 2
r∑

i�=j,i,j=1

[λi(x), λj(x)]gL(ci)L(cj) +
r∑

i=1

g′(λi(x))Q(ci)(2.6)

or equivalently

∇G(x) = 2
r̄∑

i�=j, i,j=1

[μi(x), μj(x)]gL(bi)L(bj) +
r̄∑

i=1

g′(μi(x))Q(bi).(2.7)

Furthermore, ∇G(x) is a linear and symmetric operator from J into itself.
As a consequence of Theorem 2.8, we obtain the following result in the case of

rk(A)=dim(J ).
Corollary 2.9. Suppose that rk(A) = dim(J ) = n and x =

∑n
j=1 λj(x)cj =∑n̄

i=1 μi(x)bi. If G(·) is (continuously) differentiable at x, then it holds that

∇G(x) =
n∑

i=1

g′(λi(x))L(ci) =
n̄∑

i=1

g′(μi(x))L(bi).(2.8)

Proof. Since rk(A)=dim(J ) = n, it follows from Theorem 3.5 in [20] that there is
a unique Jordan frame {c1, c2, . . . , cn} in A. Thus, through Theorem 2.5, any element
h ∈ J can be expressed by h =

∑n
i=1 hici with hi ∈ R (i = 1, 2, . . . , n). Therefore,

L(ci)L(cj)h = L(cj)L(ci)h = ci ◦ (cj ◦ h) =

{
ci ◦ (hjcj) = 0 if i �= j,

ci ◦ (hici) = ci ◦ h if i = j.

This implies that L(ci)L(cj) = 0 (i �= j) and L(ci)L(ci) = L(ci) for any i, j ∈
{1, 2, . . . , n}. Hence Q(ci) = L(ci). Formula (2.8) is then an implication of Theo-
rem 2.8.

As an application of Corollary 2.9, we consider the Jacobian of the Löwner oper-
ator on Rn.

Example 2.10. Suppose that A = (Rn, 〈·, ·〉, ∗) as in Example 2.1. Let x =∑n
i=1 xiei. One can easily verify that L(ei) = eie

T
i = Ei (i = 1, 2, . . . , n). Note that

rk((Rn, 〈·, ·〉, ∗)) = dim(Rn) = n. It is obvious via Corollary 2.9 that

∇G(x) =
n∑

i=1

g′(xi)L(ei) = Diag{g′(x1), g′(x2), . . . , g′(xn)}.

D
ow

nl
oa

de
d 

05
/0

7/
14

 to
 1

34
.7

.2
48

.1
30

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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The next theorem presents a sufficient condition which guarantees that the Ja-
cobian ∇G(x) is positive semidefinite (respectively, positive definite). Here ∇G(x) is
called positive semidefinite (respectively, positive definite) if 〈h,∇G(x)h〉 ≥ 0 for all
h ∈ J (respectively, 〈h,∇G(x)h〉 > 0 for all 0 �= h ∈ J ).

Theorem 2.11. Let x =
∑r

j=1 λj(x)cj . If g is (continuously) differentiable at
λj(x) for each j ∈ {1, 2, . . . , r} and g′(t) ≥ 0 for all t ∈ R, then G(·) is (continuously)
differentiable at x and the Jacobian ∇G(x) is positive semidefinite. Moreover, the
Jacobian is positive definite if the condition g′(t) ≥ 0 is replaced by g′(t) > 0.

Proof. Let x =
∑r

j=1 λj(x)cj . By Theorem 2.5, any element h ∈ J can be
expressed by h =

∑r
i=1 hici +

∑
1≤k<l≤r hkl where hi ∈ R (i = 1, 2, . . . , r) and hkl ∈

Jkl (1 ≤ k < l ≤ r). Theorem 2.5 also implies that cj ◦ ∑r
i=1 hici = hjcj and

cj ◦
∑

1≤k<l≤r hkl = 1
2

(∑
k<j hkj +

∑
l>j hjl

)
. It therefore holds that

cj ◦ h = hjcj +
1
2

⎛
⎝j−1∑

k=1

hkj +
r∑

l=j+1

hjl

⎞
⎠ ,(2.9)

where
∑j−1

k=1 hkj
Δ= 0 if j = 1 and

∑r
l=j+1 hjl

Δ= 0 if j = r. Furthermore, Theorem 2.5
implies that

〈h, cj ◦ (ci ◦ h)〉 = 〈cj ◦ h, ci ◦ h〉 =
1
4
〈hji, hji〉 =

1
4
‖hji‖2, ∀j �= i,(2.10)

and

Q(cj)h = 2cj ◦ (cj ◦ h) − cj ◦ h = hjcj, j = 1, 2, . . . , r.(2.11)

Meanwhile, noting that c2
j = cj , one has 〈h, cj〉 = 〈cj ◦ h, cj〉 = hj〈cj , cj〉 = hj‖cj‖2.

Combining this with (2.6), (2.10), and (2.11) and noting that L(cj)L(ci)h = cj◦(ci◦h),
one has

〈h,∇G(x)h〉 =

〈
h,

r∑
j �=i,j,i=1

2(g[1](λ(x)))jicj ◦ (ci ◦ h) +
r∑

j=1

(g[1](λ(x)))jjhjcj

〉

=
r∑

j �=i,j,i=1

2(g[1](λ(x)))ji〈h, cj ◦ (ci ◦ h)〉 +
r∑

j=1

(g[1](λ(x)))jjhj〈h, cj〉

=
1
2

r∑
j �=i,j,i=1

(g[1](λ(x)))ji‖hji‖2 +
r∑

j=1

(g[1](λ(x)))jjh
2
j‖cj‖2.

If g′(t) ≥ 0 (g′(t) > 0) for all t ∈ R, then by (2.5) we can easily get (g[1](λ(x)))ji ≥ 0
((g[1](λ(x)))ji > 0) for all j �= i, j, i = 1, 2, . . . , r. Hence, 〈h,∇G(x)h〉 ≥ 0 for all
h ∈ J (〈h,∇G(x)h〉 > 0 for all 0 �= h ∈ J ) through the above equation.

We proceed to study the semismoothness of the Löwner operator G(·). Semi-
smoothness was originally introduced by Mifflin [24] for functionals. Qi and Sun [26]
extended the concept of semismoothness to vector-valued functions and developed
a systematic theory that employs semismoothness in the analysis of the superlinear
convergence of Newton methods for solving systems of nondifferentiable equations.

We briefly review some concepts and results of the semismoothness from [26]. Let
� : C ⊆ X → Y be a locally Lipschitz function on an open set C. By Rademacher’s
theorem, � is almost everywhere differentiable (in the sense of Fréchet) in C. Let D�
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1034 LINGCHEN KONG, JIE SUN, AND NAIHUA XIU

be the set of points where � is differentiable. Let �′(x) denote the derivative of � at
x ∈ D� and let ∇�(x) denote the Jacobian of � at x, which is the adjoint operator
of �′(x), in the sense of 〈y,∇�(x)z〉 = 〈�′(x)y, z〉 for all y ∈ X and z ∈ Y. Then, the
Clarke generalized Jacobian of � at x is defined by ∂�(x) Δ= conv{∂B�(x)}, where
∂B�(x) Δ= {limx̄→x,x̄∈D�

∇�(x̄)}. Observe that ∂�(x) = {∇�(x)} if � is smooth
(continuously differentiable) at x. We say � is directionally differentiable at x along
the direction d if

�
′(x, d) Δ= lim

t↓0
�(x + td) − �(x)

t
exists,

where �′(x, d) is called the directional derivative of � at x along the direction d; and
� is directionally differentiable at x if � is directionally differentiable at x along any
direction d �= 0.

Employing the above concepts, we can define (strong) semismoothness of a func-
tion �.

Definition 2.12. A directionally differentiable and locally Lipschitz function
� : C ⊆ X → Y is semismooth at x ∈ C if V T d − �′(x; d) = o(‖d‖) for any
d �= 0, d ∈ X sufficiently small and V ∈ ∂�(x + d). In particular, if o(‖d‖) can be
replaced by O(‖d‖2), � is called strongly semismooth.

By combining Theorem 3.3 with Proposition 3.3 in [30], we have the following
result on (strong) semismoothness of the Löwner operator G(·).

Lemma 2.13. Let x =
∑r

j=1 λj(x)cj . Then G(·) is (strongly) semismooth at
x if and only if for each j ∈ {1, 2, . . . , r}, g is (strongly) semismooth at λj(x). In
particular, the metric projection operator PK is strongly semismooth on J .

We are ready to extend Theorems 2.8 and 2.11 to the case of a semismooth
Löwner operator G(·). Let g be semismooth at τi (i = 1, 2, . . . , r) and ∂g denote
the generalized Jacobian of g in the sense of Clarke. Define the first generalized
divided difference g[1,∂] of g at τ as the set of all r × r symmetric matrices, where the
ijth entry (g[1,∂](τ))ij of the element g[1,∂](τ) ∈ g[1,∂] is given by a set {[τi, τj ]g} for
i, j = 1, 2, . . . , r, where

{[τi, τj ]g} =

⎧⎨
⎩
{

g(τi) − g(τj)
τi − τj

}
if τi �= τj ,

∂g(τi) if τi = τj .

Theorem 2.14. Let x ∈ J . Then G(·) is (strongly) semismooth at x if and
only if g is (strongly) semismooth at every eigenvalue of x. In this case, the Clarke
generalized Jacobian ∂G(x) satisfies

∂G(x) ⊇ ∂G(x) ⊇ ∂G(x)

with the sets ∂G(x) and ∂G(x) being given, respectively, by

∂G(x) Δ= conv

⎡
⎣ ⋃
{c1,...,cr}∈C(x)

∂c1,...,crG(x)

⎤
⎦ ,

∂G(x) Δ=

⎧⎨
⎩2

r̄∑
i�=j, i,j=1

[μi(x), μj(x)]gL(bi(x))L(bj) +
r̄∑

i=1

∂g(μi(x))Q(bi)

⎫⎬
⎭ ,

where C(x) is the set consisting of all Jordan frames in the spectral decomposition type
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REGULARIZED SMOOTHING METHOD FOR SCCP 1035

II of x, and ∂c1,...,crG(x) Δ= {2∑r
i�=j, i,j=1{[λi(x), λj(x)]g}L(ci)L(cj)+

∑r
i=1 ∂g(λi(x))

Q(ci)}.
Proof. The first part of the theorem follows from Lemma 2.13. For the second

part, we first show ∂G(x) ⊇ ∂G(x). By the definitions of ∂G and ∂G we need to
prove only that

⋃
{c1,...,cr}∈C(x) ∂c1,...,crG(x) ⊇ ∂BG(x). Taking any V ∈ ∂BG(x),

by the definition of ∂BG(x) there exists a vector h
Δ= h(V ) ∈ J such that V =

limh→0,x+h∈DG ∇G(x + h). In order to show V ∈ ⋃{c1,...,cr}∈C(x) ∂c1,...,crG(x), we
proceed as follows.

Take any {c1, . . . , cr} ∈ C(x) and let x =
∑r

j=1 λj(x)cj =
∑r̄

i=1 μi(x)bi(x) with
λ1(x) ≥ λ2(x) ≥ · · · ≥ λr(x) and μ1(x) > μ2(x) > · · · > μr̄(x). For the above h ∈ J ,
let x + h

Δ=
∑r

j=1 λj(x + h)cj(x + h) with λ1(x + h) ≥ λ2(x + h) ≥ · · · ≥ λr(x + h).
By Theorem 2.4 and the argument after it, in the sense of set convergence (see, e.g.,
[27]), one has

lim
h→0,x+h∈DG

{λ(x + h)} = {λ(x)},

where λ(x+h) Δ= (λ1(x+h), λ2(x+h), . . . , λr(x+h))T and λ(x) Δ= (λ1(x), λ2(x), . . . ,
λr(x))T . Similarly, using “lim sup” in the sense of set convergence, we have

lim sup
h→0,x+h∈DG

{(c1(x + h), c2(x + h), . . . , cr(x + h))} ⊆ C(x).(2.12)

Notice that for any i, j = 1, 2, . . . , r,

lim sup
h→0,x+h∈DG

{[λi(x + h), λj(x + h)]g}
⎧⎨
⎩ =

{
g(λi(x)) − g(λj(x))

λi(x) − λj(x)

}
if λi(x) �= λj(x),

⊆ ∂g(λi(x)) if λi(x) = λj(x).

Thus,

lim sup
h→0,x+h∈DG

{[λi(x + h), λj(x + h)]g} ⊆ {[λi(x), λj(x)]g}.(2.13)

Also, it holds by (2.6) that for x + h ∈ DG,

∇G(x + h) = 2
r∑

i�=j, i,j=1

[λi(x + h), λj(x + h)]gL(ci(x + h))L(cj(x + h))

+
r∑

i=1

g′(λi(x + h))Q(ci(x + h)).

This, together with (2.12), (2.13), and the continuity property of L(x) and Q(x), leads
to

lim sup
h→0,x+h∈DG

{∇G(x + h)}

⊆
⋃

{c1,...,cr}∈C(x)

⎧⎨
⎩2

r∑
i�=j, i,j=1

{[λi(x), λj(x)]g}L(ci)L(cj) +
r∑

i=1

∂g(λi(x))Q(ci)

⎫⎬
⎭ .

Clearly, V = limh→0,x+h∈DG ∇G(x + h) ∈ lim suph→0,x+h∈DG
{∇G(x + h)}. This

implies that V ∈ ⋃{c1,...,cr}∈C(x) ∂c1,...,crG(x) by the definition of ∂c1,...,crG(x).
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1036 LINGCHEN KONG, JIE SUN, AND NAIHUA XIU

We next prove ∂G(x) ⊇ ∂G(x). For any W (x) ∈ ∂G(x) with x =
∑r̄

i=1 μi(x)bi(x)
and μ1(x) > μ2(x) > · · · > μr̄(x), by the definition of ∂G(x) we have

W (x) = 2
r̄∑

i�=j, i,j=1

[μi(x), μj(x)]gL(bi(x))L(bj(x)) +
r̄∑

i=1

wiQ(bi(x))

with wi ∈ ∂g(μi(x)) (i = 1, 2, . . . , r̄). Since g is semismooth at μi(x), ∂g(μi(x)) and
∂Bg(μi(x)) are well-defined and dim(∂g(μi(x))) = 1. Let Dg be the set consisting
of all the differentiable points of g. By Carathéodory theorem (see [27]), for any
given wi ∈ ∂g(μi(x)) there exist ti ∈ [0, 1] and two subsequences {hi,0} and {hi,1}
converging to 0 with μi(x) + hi,0, μi(x) + hi,1 ∈ Dg such that

wi,li
Δ= lim

hi,li
→0,μi(x)+hi,li

∈Dg

g′(μi(x) + hi,li) ∈ ∂Bg(μi(x)), li ∈ {0, 1}(2.14)

and

wi = tiwi,0 + (1 − ti)wi,1.(2.15)

Based on the set {hi,li : li ∈ {0, 1}, i = 1, 2, . . . , r̄}, we construct a set H by

H Δ=

{
r̄∑

i=1

hi,libi(x) : li ∈ {0, 1}
}

.

Let l
Δ= (l1, l2, . . . , lr̄) and hl

Δ=
∑r̄

i=1 hi,libi(x) with li ∈ {0, 1}. Then the set H can
be rewritten as H Δ= {hl : l ∈ {0, 1}r̄}, which includes 2r̄ elements. Meanwhile, for
each element hl, we have

x + hl =
r̄∑

i=1

(μi(x) + hi,li)bi(x).

Moreover, taking sufficiently small ‖hl‖, we have μ1(x)+h1,l1 > μ2(x)+h2,l2 > · · · >
μr̄(x)+hr̄,lr̄ , and hence μi(x+hl) = μi(x)+hi,li , bi(x+hl) = bi(x) by the uniqueness
of spectral decomposition type I. Thus, x + hl ∈ DG by μi(x) + hi,li ∈ Dg, and from
(2.7) and (2.14) we obtain

Wl(x) Δ= lim
hl→0,x+hl∈DG

∇G(x + hl)

= 2 lim
hl→0,x+hl∈DG

[
r̄∑

i�=j, i,j=1

[μi(x) + hi,li , μj(x) + hj,lj ]gL(bi(x))L(bj(x))

+
r̄∑

i=1

g′(μi(x) + hi,li)Q(bi(x))

]

= 2
r̄∑

i�=j, i,j=1

[μi(x), μj(x)]gL(bi(x))L(bj(x)) +
r̄∑

i=1

wi,liQ(bi(x)).

Therefore, Wl(x) ∈ ∂BG(x) for every l ∈ {0, 1}r̄. This implies that

W(x) Δ= conv{Wl(x) : l ∈ {0, 1}r̄} ⊆ ∂G(x).(2.16)
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REGULARIZED SMOOTHING METHOD FOR SCCP 1037

To prove W (x) ∈ ∂G(x), it suffices to claim that W (x) ∈ W(x). In fact, from
expressions of W (x) and Wl(x), it is easy to see that w

Δ= (w1, w2, . . . , wr̄) given above
lies in the hypercube whose extreme points are defined by wi,li with li ∈ {0, 1}, i =
1, 2, . . . , r̄. Hence, W (x) must be a convex combination of points {Wl(x) : l ∈
{0, 1}r̄}. The proof is completed.

Remark 2.15. From Theorem 2.14, we easily observe that if x ∈ J has distinct
eigenvalues λ1(x), . . . , λr(x) and C(x) has an element, then ∂G(x) = ∂G(x) = ∂G(x).
However, if x has the multiple eigenvalues or C(x) contains many elements, the sets
∂G(x), ∂G(x), and ∂G(x) may be different as the following example shows.

Let A = Λn (n ≥ 3) and x =
∑2

i=1 λici as in Example 2.2. Take G(x) =
PK(x) where g(t) = t+, and let x = 0. Then λ1 = λ2 = 0, and there are in-
finitely many Jordan frames at x = 0. The direct calculation yields ∂PΛn

+
(0) =

conv{4[0, 1]L(c1)L(c2) + [0, 1]Q(c1) + [0, 1]Q(c2)} and ∂PΛn
+
(0) = conv{0, E} where

conv{0, E} = {αE : 0 ≤ α ≤ 1}. Note that ∂PΛn
+
(0) = conv{0, E, S} by Proposi-

tion 4.8 in [15] where S satisfies

S = 4 × 1 + β

2
L(c1)L(c2) + 0 × Q(c1) + Q(c2),

where 1+β
2 ∈ [0, 1]. A simple calculation checks that ∂PΛn

+
(0) ⊂ ∂PΛn

+
(0) ⊂

∂PΛn
+
(0).

Remark 2.16. Suppose that rk(A) = dim(J ) = n and x =
∑n

j=1 λj(x)cj =∑n̄
i=1 μi(x)bi as in the case of Corollary 2.9. If G(·) is (strongly) semismooth at x, we

derive by Theorem 2.14 that ∂G(x) ⊆ ∂G(x) ⊆ ∂G(x), where

∂G(x) =
n∑

i=1

∂g(λi(x))L(ci), ∂G(x) =
n̄∑

i=1

∂g(μi(x))L(bi).

Especially, when A = (Rn, 〈·, ·〉, ∗) as in Example 2.10 and x =
∑n

i=1 xiei =
∑n̄

i=1 yi

(
∑

j∈N(i) ej), in the similar way to the second part in the proceeding proof, one has
∂G(x) ⊆ ∂G(x). Hence,

∂G(x) = ∂G(x) =
n∑

i=1

∂g(xi)Ei = Diag{∂g(x1), . . . , ∂g(xn)},

∂G(x) =
n̄∑

i=1

∂g(yi)

⎛
⎝ ∑

j∈N(i)

Ej

⎞
⎠ = Diag{∂g(y1)I1, . . . , ∂g(yn̄)In̄},

where Ii is the |N(i)| × |N(i)| identity matrix for i = 1, 2, . . . , n̄. Moreover, letting
G(x) = PK(x) and x = 0, we derive

∂PRn
+
(0) = ∂PRn

+
(0) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

[0, 1] 0 · · · 0
0 [0, 1] · · · 0
...

...
. . .

...
0 0 · · · [0, 1]

⎞
⎟⎟⎟⎠
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⊃ {αE, 0 ≤ α ≤ 1} = ∂PRn
+
(0).

Theorem 2.14 provides an approximation to the Clarke generalized Jacobian,
which can be successfully employed to prove the positive semidefiniteness of ∂G(·).
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Theorem 2.17. If g is (strongly) semismooth at every eigenvalue of x and
∂g(t) ⊆ R+ (∂g(t) ⊆ R++) for all t ∈ R, then the function G(·) is (strongly)
semismooth at x, and all the element V ∈ ∂G(x) are positive semidefinite (posi-
tive definite). Moreover, when ∂g(t) ⊆ R++, there exists a scalar α(x) > 0 such that
V 	 α(x)I 
 0.

Proof. By Theorem 2.14 and the definition of ∂G, it suffices to demonstrate that
if ∂g(t) ⊆ R++ for all t ∈ R, then for any {c1, . . . , cr} ∈ C(x) and V ∈ ∂c1,...,crG(x)
there is a scalar α(x) such that V 	 α(x)I 
 0. In this case, one has x =

∑r
i=1 λi(x)ci

and

V = 2
r∑

i�=j, i,j=1

νij(x)L(ci)L(cj) +
r∑

i=1

νii(x)Q(ci)

with νij(x) ∈ {[λi(x), λj(x)]g}. Note that ∂g(λj(x)) ⊆ R++ is a closed convex set for
every j = 1, . . . , r. Taking

α(x) Δ= min
i,j

{[λi(x), λj(x)]g},

by (2.5) and the given assumptions we have α(x) > 0 and hence α(x)I 
 0.
We now prove V̄

Δ= V − α(x)I 	 0, that is, 〈h, V̄ h〉 ≥ 0 for any h ∈ J . In fact,
from (2.6) with g(λ) = λ, we have

I = 2
r∑

i�=j, i,j=1

L(ci)L(cj) +
r∑

i=1

Q(ci).

Thus,

V̄ = 2
r∑

i�=j, i,j=1

[νij(x) − α(x)]L(ci)L(cj) +
r∑

i=1

[νii(x) − α(x)]Q(ci)

with [νij(x) − α(x)] ≥ 0 for any i, j = 1, . . . , r. Modeling the proof of Theorem 2.11,
we immediately derive the desired result.

Furthermore, we can obtain the bounded property of ∂G if ∂g is a bounded set.
Corollary 2.18. Under the assumptions of Theorem 2.17, for any V ∈ ∂G(x)

and scalars a, b ∈ R with a ≤ b, there hold
(i) If ∂g(t) ⊆ [a, b], then aI � V � bI.
(ii) If ∂g(t) ⊆ (a, b) with a < b, then aI ≺ V ≺ bI.
Proof. Let f(t) = g(t) − at. Note that ∂g(t) ⊆ [a, b], then ∂f(t) ⊆ R+. By

Theorem 2.17, one has V − aI 	 0 for any V ∈ ∂G(x). On the other hand, letting
f̄(t) = bt− g(t), one has ∂f̄(t) ⊆ R+ and hence bI −V 	 0 for any V ∈ ∂G(x). These
two arguments show part (i). Similarly, we can verify Part (ii).

3. The total NR-function. For problem (1.1), we define the natural residual
function (NR-function) ΦNR : J × J → J by

(3.1) ΦNR(x, y) Δ= x − PK(x − y),

and the total NR-function HNR : J × J → J × J by

(3.2) HNR(x, y) Δ=
(

ΦNR(x, y)
F (x) − y

)
.
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Moreover, we specify function ΨNR : J × J → R by

(3.3) ΨNR(x, y) Δ=
1
2
‖HNR(x, y)‖2 =

1
2
‖ΦNR(x, y)‖2 +

1
2
‖F (x) − y‖2.

From Proposition 6 in [12], we know that

ΦNR(x, y) = 0 ⇐⇒ x ∈ K, y ∈ K, 〈x, y〉 = 0.

Therefore, problem (1.1) can be reformulated as a nonsmooth system of nonlinear
equations: HNR(x, y) = 0. Based on this system, we may establish various solution
methods, such as nonsmooth and smoothing Newton methods, see, e.g., [9, 17] for
the case of NCP. In this paper, our aim is to present a globally and quadratically
convergent regularized smoothing Newton method for SCCP. For this purpose, we
need to investigate strong semismoothness of HNR, nonsingularity of ∂HNR, and
level-boundedness of ΨNR.

First, we present a result concerning the strong semismoothness of HNR. Since
the proof is similar to that of Theorem 4.6 in [15], it is omitted.

Theorem 3.1. Let F : J → J be continuously differentiable. Then the function
HNR defined by (3.2) is semismooth at any (x, y) ∈ J ×J . Moreover, if ∇F is locally
Lipschitzian, then HNR is strongly semismooth at any (x, y) ∈ J × J .

Next, we address Clarke generalized Jacobian ∂HNR. Let T ∈ ∂HNR(x, y) for
any (x, y) ∈ J × J . Then T has the following form:

(3.4) T =
(

I − V ∇F (x)
V −I

)
,

where V ∈ ∂PK(x − y). Since ∂t+ equals {1} for t > 0, [0, 1] for t = 0, and {0} for
t < 0, by Corollary 2.18 (i) we have 0 � V � I.

The nonsingularity result on T is well-known for NCP (see, e.g., [9]) or SOCCP
(see, e.g., [11]). In a similar manner, we can easily show that it is still true for SCCP,
which does not need a further proof. We say that F : J → J is monotone (strongly
monotone) if for all (x, y) ∈ J ×J , 〈x− y, F (x)−F (y)〉 ≥ 0 (〈x− y, F (x)−F (y)〉 ≥
ε‖x − y‖2 with some ε > 0).

Theorem 3.2. Let F : J → J be continuously differentiable, and T be given by
(3.4).

(a) If F is monotone and 0 ≺ V ≺ I, then T is invertible for any (x, y) ∈ J ×J .
(b) If F is strongly monotone and 0 � V � I, then T is invertible for any

(x, y) ∈ J × J .
It should be noted that if V is a linear and symmetric operator from J into itself,

then the results in this theorem are still true.
We end this section by stating a well-known result on the boundedness of the level

sets Levα(ΨNR) Δ= {(x, y) ∈ J × J : ΨNR(x, y) ≤ α} for α ∈ R, which can ensure
that the sequence generated by a descent method for solving min ΨNR(x, y) has at
least one accumulation point. For more details, see, e.g., [25, 36].

Theorem 3.3. Let ΨNR be defined by (3.3). If F (x) is strongly monotone and
locally Lipschitzian, then the level sets Levα(ΨNR) are bounded for all α ∈ R.

4. The Chen–Mangasarian smoothing function. In the previous section,
we know that the total NR-function shares the strong semismoothness property be-
cause of that of the NR-function. In order to establish the desired smoothing Newton
methods, we need to smoothen the NR-function and the total NR-function. This
section deals with this issue.
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In the literature on NCP, there are two well-known classes of the smoothing
functions, i.e., the Chen–Mangasarian smoothing function and the smoothed Fischer–
Burmeister function. Recently, they were successfully extended to SDCP [6, 31] and
SOCCP [11]. In what follows, we first study an extension of the Chen–Mangasarian
smoothing function.

Definition 4.1. Let � : X → Y be a nondifferentiable function. A function
�u : X → Y with a parameter vector u ∈ R

q
+ is called a smoothing function of � if it

has the following properties:
(a) �u is continuously differentiable for any u ∈ R

q
++;

(b) limu↓0 �u(x) = �(x) for any x ∈ X , where u ↓ 0 means u ∈ R
q
++, u → 0.

We say �u is a uniformly smooth approach function of � if there is a scalar κ > 0
such that

‖�u(x) − �(x)‖ ≤ κ‖u‖, ∀u ∈ R
q
++, ∀x ∈ X .

Let � ∈ R++. For NR-function ΦNR as in (3.1), we define the Chen–Mangasarian
smoothing function Φ� : J × J → J as

(4.1) Φ�(x, y) = x − Π�(x − y),

where Π� : J → J is specified by Π�(z) Δ= �G(z/�) and G ∈ CM. Here, CM
denotes the set of Löwner operators defined by (2.3) with g : R → R+, a continuously
differentiable convex function satisfying

(4.2) lim
t→−∞ g(t) = 0, lim

t→∞(g(t) − t) = 0 and 0 < g′(t) < 1 for all t ∈ R.

Two known cases of function g are as follows: One is the CHKS function g(t) =
(
√

t2 + 4+ t)/2, which was proposed by Chen and Harker [1], Kanzow [18], and Smale
[28], and the other is the neural network function g(t) = ln(et + 1), which was used
in neural networks [2]. Based on the above definitions and Theorem 2.4, we below
derive formulae for Φ�.

Proposition 4.2. Let Φ� be given by (4.1). Then it holds that Φ�(x, y) =
x − �

∑r
i=1 g(λi/�)ci where λi, ci (i = 1, 2, . . . , r) are given by x − y =

∑r
i=1 λici.

Moveover, one has

Φ0(x, y) Δ= lim
�↓0

Φ�(x, y) = x − PK(x − y).

Proof. The first part is trivial. Note that lim�↓0 �g(λi/�) = (λi)+ by (4.2). This
derives that lim�↓0 Φ�(x, y) = x−∑r

i=1(λi)+ci. The second part holds by (2.4).

4.1. Uniformly smooth approximation. The following proposition claims
that Φ� is a uniformly smooth approximation of ΦNR.

Proposition 4.3. Let Φ� be given by (4.1). Then, for any scalars � > ν ≥ 0,
we have

(4.3) g(0)(� − ν)e 	K Φν(x, y) − Φ�(x, y) 
K 0, ∀x, y ∈ J .

Proof. In order to prove the proposition, we first consider the case where � >
ν > 0. By Proposition 4.2, it is easy to verify Φν(x, y)−Φ�(x, y) =

∑r
i=1(�g(λi/�)−

νg(λi/ν))ci where λi and ci are given by x − y =
∑r

i=1 λici. Noting that for every
i = 1, 2, . . . , r, 0 < �g(λi/�) − νg(λi/ν) ≤ g(0)(� − ν) by Lemma 3.1 in [34], we have

(4.4) g(0)(� − ν)e =
r∑

i=1

g(0)(� − ν)ci 	K Φν(x, y) − Φ�(x, y) 
K 0.
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This shows that (4.3) holds in the case of � > ν > 0, and that −Φν is monotone
in ν > 0 with respect to the partial ordering 
K . Taking ν → 0+ in (4.4), one has
g(0)�e 	K Φ0(x, y) − Φ�(x, y) 
K 0. That is, (4.4) also holds for � > ν = 0. The
proof is completed.

4.2. Differentiability. Let g : R → R+ be a continuously differentiable convex
function satisfying (4.2). As in [34] for the setting of NCP and in [15] for the context
of SOCCP, we define for any � > 0,

γ�(t)
Δ= �g(t/�),(4.5)

γ0(t)
Δ= lim

�↓0
γ�(t) = max{0, t},(4.6)

γ+
0 (t) Δ= lim

�↓0
γ′

�(t) =

⎧⎨
⎩

0 for t < 0,
g′(0) for t = 0,
1 for t > 0.

(4.7)

Let z =
∑r

j=1 λj(z)cj(z). By Π�(z) = �G(z/�) with G ∈ CM, Theorem 2.8 leads to

(4.8) ∇Π�(z) = ∇G(z/�) = 2
r∑

i�=j,i,j=1

aijL(ci(z))L(cj(z)) +
r∑

i=1

aiiQ(ci(z)),

where for all i, j = 1, 2, . . . , r,

aij = [λi(z)/�, λj(z)/�]g =

⎧⎪⎨
⎪⎩

g(λi(z)/�) − g(λj(z)/�)
λi(z)/�− λj(z)/�

if λi(z) �= λj(z),

g′(λi(z)/�) if λi(z) = λj(z).

By (4.5), we have γ′
�(t) = g′(t/�). Therefore

(4.9) aij = [λi(z), λj(z)]γ� =

⎧⎪⎨
⎪⎩

γ�(λi(z)) − γ�(λj(z))
λi(z) − λj(z)

if λi(z) �= λj(z),

γ′
�(λi(z)) if λi(z) = λj(z).

By (4.2) and (4.9), one has 0 < aij < 1. Thus, by Corollary 2.18 (ii), it holds
I 
 ∇Π�(z) 
 0. In summary, we have the following conclusion.

Proposition 4.4. The function Π� is continuously differentiable, and I 

∇Π�(z) 
 0.

Furthermore, by applying Theorem 2.8 and the chain rule, we immediately obtain
the differential property of the Chen–Mangasarian smoothing function Φ�, which does
not need a proof.

Proposition 4.5. For any � > 0, the Chen–Mangasarian smoothing function
Φ�, defined by (4.1), is continuously differentiable and its Jacobian is given by

∇Φ�(x, y) =
(

I −∇Π�(x − y)
∇Π�(x − y)

)
=
(

I −∇G((x − y)/�)
∇G((x − y)/�)

)
.

4.3. Jacobian consistency. Like strong semismoothness, Jacobian consistency
plays an important role in establishing rapid convergence of smoothing Newton meth-
ods. This concept was originally introduced by Chen, Qi, and Sun [8] for variational
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inequalities, and was recently used by Hayashi, Yamashita, and Fukushima [15] an-
alyzing the regularized smoothing method for SOCCP, where their Jacobian consis-
tency contains two parameters. We state a more general definition as follows.

Definition 4.6. Suppose that � : X → Y is a continuous function and ∂�

exists. Let �u be a smoothing function of �. We say that �u satisfies the Jacobian
consistency if

(4.10) lim
u↓0

dist(∇�u(x), ∂�(x)) = 0, for any x ∈ X .

To show Jacobian consistency of the Chen–Mangasarian smoothing function Φ�,
we first look at the function Π�(z). Define bij

Δ= lim�↓0 aij for all i, j = 1, 2, . . . , r.
From (4.5)–(4.7) and (4.9), we derive that

(4.11) bij =

⎧⎨
⎩

γ0(λi(z))−γ0(λj(z))
λi(z)−λj(z) if λi(z) �= λj(z),

γ+
0 (λi(z)) if λi(z) = λj(z).

Obviously, by (4.2), 0 ≤ bij ≤ 1. By the direct calculation, one has

(4.12) lim
�↓0

∇Π�(z) = 2
r∑

i�=j,i,j=1

bijL(ci(z))L(cj(z)) +
r∑

i=1

biiQ(ci(z)).

Rewriting z as z =
∑r̄

i=1 μi(z)bi(z), from Theorem 2.8 we deduce

∇Π�(z) = 2
r̄∑

i�=j, i,j=1

[μi(z), μj(z)]γ�L(bi(z))L(bj(z)) +
r̄∑

i=1

γ′
�(μi(z))Q(bi(z)).

In a similar manner as in (4.12), we derive that

lim
�↓0

∇Πμ(z) = 2
r̄∑

i�=j, i,j=1

[μi(z), μj(z)]γ0L(bi(z))L(bj(z)) +
r̄∑

i=1

γ+
0 (μi(z))Q(bi(z)).

Take ∂0
Π(z) Δ= lim�↓0 ∇Πμ(z). It follows from Theorem 2.14 that ∂0

Π(z) ∈ ∂PK(z) ⊆
∂PK(z). Summarizing the preceding argument, we have the following.

Lemma 4.7. Let ∂0
Π(z) = lim�↓0 ∇Π�(z). Then ∂0

Π(z) ∈ ∂PK(z) for any z ∈ J .
Thus Π� satisfies the Jacobian consistency.

Combining Lemma 4.7 with Proposition 4.5, the Jacobian consistency of Φ� is
immediate.

Proposition 4.8. Φ� satisfies the Jacobian consistency.
In the end of this section, we further consider the function g satisfying both (4.2)

and the following

(4.13) g(t) − t = g(−t), ∀t ∈ R.

For instance, (
√

t2 + 4+ t)/2 and ln(et +1) are such two functions. Can we get a more
specific result than Proposition 4.8 in this case? To settle this question, we need the
following lemma from [15].

Lemma 4.9 (Lemma 4.10, [15]). Let g be a continuously differentiable convex
function satisfying (4.2) and (4.13). Let γ�, γ0, and γ+

0 be given by (4.5)–(4.7). Then
it holds that
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(a) γ�(t) − γ0(t) = γ�(−t) − γ0(−t) for any t ∈ R;
(b)

∣∣γ′
�(t) − γ+

0 (t)
∣∣ = ∣∣γ′

�(|t|) − γ+
0 (|t|)∣∣ for any t ∈ R;

(c)
∣∣γ′

�(0) − γ+
0 (0)

∣∣ = 0 <
∣∣γ′

�(t2) − γ+
0 (t2)

∣∣ ≤ ∣∣γ′
�(t1) − γ+

0 (t1)
∣∣ for any ti ∈

R(i = 1, 2) such that 0 < |t1| ≤ |t2|.
For z =

∑r
j=1 λj(z)cj(z), let N(z) be the index set specified by N(z) Δ= {i :

λi(z) �= 0}. Define the function λ̃ : J → R+ by

(4.14) λ̃(z) Δ=

{
mini∈N(z) |λi(z)| for N(z) �= Ø,

0 for N(z) = Ø.

Obviously, λ̃(z) = 0 if and only if z = 0. When z �= 0, by (4.5) and the continuous
differentiability of g, there is a scalar ς ∈ (0, λ̃(z)) such that γ′

�(ς) =
γ�(λ̃(z))−γ�(0)

λ̃(z)
;

meanwhile, noting that g is convex, one has γ′
�(t) ≤ γ�(λ̃(z))−γ�(0)

λ̃(z)
for any t ∈ (0, ς).

So, in the case of z �= 0, there exists a positive integer l such that 1
2l λ̃(z) ∈ (0, ς).

Based on the preceding argument, we define the function λ
 : J → R+ by

(4.15) λ
(z) Δ=

{
1
2l λ̃(z) for N(z) �= Ø,

0 for N(z) = Ø,

where l is the smallest positive integer such that

(4.16) γ′
�

(
1
2l

λ̃(z)
)

≤
γ�

(
λ̃(z)

)
− γ�(0)

λ̃(z)
.

Then λ
(z) is well-defined and 0 < λ
(z) < λ̃(z). Thus, it holds by Lemma 4.9 (c)
that

∣∣γ′
�(λi(z)) − γ+

0 (λi(z))
∣∣ ≤ ∣∣∣γ′

�

(
λ̃(z)

)
− γ+

0

(
λ̃(z)

)∣∣∣(4.17)

≤ ∣∣γ′
� (λ
(z)) − γ+

0 (λ
(z))
∣∣ , i = 1, 2, . . . , r.

Now we are ready to claim that Π�(z) not only satisfies the Jacobian consistency
but also has the stronger Jacobian property.

Theorem 4.10. Let ∂0
Π(z) = lim�↓0 ∇Π�(z). Suppose g is a continuously differ-

entiable convex function satisfying (4.2) and (4.13). Let γ�, γ0, γ
+
0 , and λ
 be given

by (4.5)–(4.7) and (4.15), respectively. Then there exists a scalar M̄ > 0 such that

∥∥∇Π�(z) − ∂0
Π(z)

∥∥ ≤ M̄
∣∣γ′

� (λ
(z)) − γ+
0 (λ
(z))

∣∣ , ∀� ∈ R++, ∀ z ∈ J .

Proof. Let z =
∑r

j=1 λj(z)cj(z). Then from (4.8) and (4.12) we obtain

∇Π�(z) − ∂0
Π(z) = 2

r∑
i�=j,i,j=1

(aij − bij)L(ci(z))L(cj(z)) +
r∑

i=1

(aii − bii)Q(ci(z)).

To prove the theorem, it is enough to show |aij − bij | ≤ |γ′
�(λ


(z)) − γ+
0 (λ
(z))| for

every i, j = 1, 2, . . . , r. We consider below two cases.
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Case (i): 0 = λi(z) < |λj(z)|. By (4.9) and (4.11), the direct calculation yields

|aij − bij | =
∣∣∣∣γ�(0) − γ�(λj(z))

0 − λj(z)
− γ0(0) − γ0(λj(z))

0 − λj(z)

∣∣∣∣
=
∣∣∣∣γ�(λj(z)) − γ�(0)

λj(z)
− 1
∣∣∣∣

= 1 − γ�(λj(z)) − γ�(0)
λj(z)

≤ 1 − γ′
� (λ
(z))

=
∣∣γ′

� (λ
(z)) − γ+
0 (λ
(z))

∣∣ ,
where the second equality follows from the fact γ0(0)−γ0(λj(z))

0−λj(z) = 1 by (4.6), the third
one from 0 <

γ�(λj(z))−γ�(0)
λj(z) = g(λj(z)/�)−g(0)

λj(z)/� < 1 by (4.2), the inequality from (4.15),
and the last equality from γ+

0 (λ
(z)) = 1 by (4.15) and (4.7).
Case (ii): Otherwise, one has |aij − bij | ≤

∣∣∣γ′
�

(
λ̃(z)

)
− γ+

0

(
λ̃(z)

)∣∣∣ , whose proof
is perfectly similar to that in [15] and is omitted for brevity.

5. Regularized smoothing function and algorithm. Based on the proceed-
ing results, we shall develop the Chen–Mangasarian class of regularized smoothing
functions for SCCP, and derive the regularized smoothing Newton method for solving
the monotone SCCP.

For the given F in (1.1) and a parameter ε > 0, we define a new function Fε :
J → J as

(5.1) Fε(x) Δ= F (x) + εx.

Again, define functions H�,ε : J × J → J × J and Ψ�,ε : J × J → R by

H�,ε(x, y) Δ=
(

Φ�(x, y)
Fε(x) − y

)
,(5.2)

Ψ�,ε(x, y) Δ=
1
2
‖H�,ε(x, y)‖2 =

1
2
‖Φ�(x, y)‖2 +

1
2
‖Fε(x) − y‖2.(5.3)

Then, H�,ε is a smoothing approximation of the regularized SCCP involving Fε

with ε > 0. Obviously, if F is monotone, then Fε is strongly monotone for any ε > 0.
In addition, if F is also locally Lipschitzian, then Ψ�,ε is level-bounded for any � ≥ 0
and ε > 0 via Theorem 3.3.

The proposed method applies the Newton algorithm to the system H�,ε(x, y) = 0
with � and ε properly adjusted at each iteration, so that a solution of the original
SCCP is eventually obtained by taking the limits as � ↓ 0 and ε ↓ 0.

For this purpose, we deal with H�,ε. From Proposition 4.5, we obtain

(5.4) ∇H�,ε(x, y) =
(

I −∇Π�(x − y) ∇F (x) + εI
∇Π�(x − y) −I

)
,

where ∇Π�(·) is specified by (4.8).
From (5.4) and Proposition 4.4, one can easily get the nonsingularity of ∇H�,ε.

The proof is omitted.
Theorem 5.1. Let F : J → J be continuously differentiable. For parameters

� > 0 and ε > 0, let Φ�(x, y), Fε(x), and H�,ε(x, y) be defined by (4.1), (5.1), and
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(5.2), respectively. If F is monotone, then ∇H�,ε, given by (5.4), is invertible for any
(x, y) ∈ J × J .

In view of (5.4), we also deduce the Jacobian consistency of H�,ε.
Theorem 5.2. Let F : J → J be continuously differentiable. For parameters

� > 0 and ε > 0, let Φ�(x, y), Fε(x), and H�,ε(x, y) be defined by (4.1), (5.1), and
(5.2), respectively. Then H�,ε satisfies the Jacobian consistency.

Proof. It holds by (5.4) and ∂0
Π(z) = lim�↓0 ∇Π�(z) that

(5.5) ∂0
ΠH(x, y) Δ= lim

(�,ε)↓(0,0)
∇H�,ε(x, y) =

(
I − ∂0

Π(x − y) ∇F (x)
∂0
Π(x − y) −I

)
.

This implies from (3.4) and Lemma 4.7 that ∂0
ΠH(x, y) ∈ ∂HNR(x, y) for any (x, y) ∈

J × J . The desired conclusion holds obviously.
Furthermore, applying Theorems 4.10 and 5.2, we estimate the upper bound of

the distance dist(∇H�,ε(x, y), ∂HNR(x, y)).
Theorem 5.3. Let F : J → J be continuously differentiable, and g be a con-

tinuously differentiable convex function satisfying (4.2) and (4.13). Suppose γ�, γ0,
and γ+

0 are given by (4.5)–(4.7), and let λ
 be defined by (4.15). Then, there exists a
scalar M > 0 such that

dist(∇H�,ε(x, y), ∂HNR(x, y)) ≤ M(|γ′
�(λ


(x − y)) − γ+
0 (λ
(x − y))| + ε),

for any � > 0, ε ≥ 0 and any (x, y) ∈ J × J .
Proof. By (5.4), (5.5), and the fact ∂0

ΠH(x, y) ∈ ∂HNR(x, y), one has for any
� > 0, ε ≥ 0, and any (x, y) ∈ J × J ,

dist(∇H�,ε(x, y), ∂HNR(x, y)) ≤ ||∇H�,ε(x, y) − ∂0
ΠH(x, y)||

≤ M̃(‖∇Π�(x − y)) − ∂0
Π(x − y))‖ + ε)

≤ M̃(M̄ |γ′
�(λ


(x − y)) − γ+
0 (λ
(x − y))| + ε),

where M̃ in the second inequality is a positive scalar, the third follows from Theorem
4.10. The desired holds immediately.

In the end of this paper, we describe an algorithm which is a word-for-word
extension of the one by Hayashi, Yamashita, and Fukushima [15] for SOCCP, and
state the corresponding convergence theorem, which can be obtained by Theorems
5.1–5.3 and following the proof of Theorem 4.13 in [15].

ALGORITHM Set w
Δ= (x, y) and w(k) Δ= (x(k), y(k)). Choose η, ρ ∈ (0, 1), η̄ ∈

(0, η], σ ∈ (0, 1/2), κ > 0, and κ̂ > 0.
Step 0 Choose w(0) ∈ J × J and β0 ∈ (0,∞). Let �0

Δ= ‖HNR(w(0))‖ and
ε0

Δ= ‖HNR(w(0))‖. Set k
Δ= 0.

Step 1 Terminate if ‖HNR(w(k))‖ = 0.
Step 2

Step 2.0 Set v(0) Δ= w(0) and j
Δ= 0.

Step 2.1 Find a vector d̂(j) such that

H�k,εk

(
v(j)
)

+ ∇H�k,εk

(
v(j)
)T

d̂(j) = 0.

Step 2.2 If ‖H�k,εk
(v(j) + d̂(j))‖ ≤ βk, then let w(k+1) Δ= v(j) + d̂(j) and

go to Step 3. Otherwise, go to Step 2.3.
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Step 2.3 Find the smallest nonnegative integer m such that

Ψ�k,εk

(
v(j) + ρmd̂(j)

)
≤ (1 − 2σρm)Ψ�k,εk

(
v(j)
)

.

Let mj
Δ= m, τj

Δ= ρmj , and v(j+1) Δ= v(j) + τj d̂
(j).

Step 2.4 If ‖H�k,εk
(v(j+1))‖ ≤ βk, then let w(k+1) Δ= v(j+1) and go to

Step 3. Otherwise, set j
Δ= j + 1 and go back to Step 2.1.

Step 3 Update the parameters as follows:

�k+1 : = min
{

κ
∥∥∥HNR

(
w(k+1)

)∥∥∥2

, �0η̄
k+1, �̄

(
λ

(
x(k+1) − y(k+1)

)
, κ̂∥∥∥HNR

(
w(k+1)

) ∥∥∥)},

εk+1 : = min
{

κ
∥∥∥HNR

(
w(k+1)

)∥∥∥2

, ε0η̄
k+1

}
,

βk+1 : = β0η
k+1,

where λ
 is given by (4.15), and �̄(t, δ) is determined so that |γ′
�(t) −

γ+
0 (t)| < δ for any � ∈ (0, �̄(t, δ)).

Step 4 Set k
Δ= k + 1. Go back to Step 1.

Note that by (4.14)–(4.16) it is not hard to calculate λ
 for NCP, SOCCP, and
SDCP cases.

Theorem 5.4. Let F : J → J be a continuously differentiable and monotone
function, and {w(k)} be a sequence generated by the Algorithm. If the solution set of
SCCP(1.1) is nonempty and bounded, then {w(k)} is bounded, and every accumulation
point is a solution of SCCP(1.1). In addition, if ∇F is locally Lipschitzian and
every accumulation point of {∇H�k,εk

(w(k))} is nonsingular, then the sequence {w(k)}
converges to a solution w∗ of SCCP(1.1) quadratically.
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