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Abstract

This paper is concerned with the problem of sparse recovery on Euclidean Jordan algebra

(SREJA), which includes the sparse signal recovery problem and the low-rank symmetric

matrix recovery problem as special cases. We introduce the notions of restricted isometry

property (RIP), null space property (NSP), and s-goodness for linear transformations in s-

SREJA, all of which provide sufficient conditions for s-sparse recovery via the nuclear norm

minimization on Euclidean Jordan algebra. Moreover, we show that both the s-goodness and

the NSP are necessary and sufficient conditions for exact s-sparse recovery via the nuclear

norm minimization on Euclidean Jordan algebra. Applying these characteristic properties,

we establish the exact and stable recovery results for splving SREJA problems via nuclear

norm minimization.
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1 Introduction

The sparse recovery on Euclidean Jordan algebra (SREJA) is the problem of recovering a sparse

(low-rank) element of a Euclidean Jordan algebra from a number of linear measurements (see

Section 2 for more details). The problem of SREJA includes the problems of sparse signal

recovery (SSR) and low-rank symmetric matrix recovery (LMR) as special cases. Since Rn and

Sn are the two simplest Euclidean Jordan Algebras (other Euclidean Jordan algebras include,

e.g, the Lorenz space Ln and the Hermitian Space Hn), the problem SPEJA is a non-trivial

generalization of SSR and LMR. The study of SPEJA may disclose more essential properties of

the sparse recovery problem, as conjectured by Recht, Fazel, and Parrilo [25], which is the main

purpose of this study.

SREJA is generally NP-hard since SSR is a well-known NP-hard problem. In the terminology

of compressed sensing (CS), SSR is also called the cardinality minimization problem, or the l0-

minimization problem, see the papers by Donoho [10] and Candès, Romberg and Tao [5, 7]. In

particular, Candès and Tao [7] introduced a restricted isometry property (RIP) of a sensing

matrix which guarantees to recover a sparse solution of SSR by `1-norm minimization. After

that, several other sparse recovery conditions were introduced, including the null space properties

(NSPs) [9] and the s-goodness [17, 18]. The recovery conditions for SSR is important since they

open the door for efficient solution of SSR, which has wide applications in signal and image

processing, statistics, computer vision, system identification, and control. For more details,

see the survey papers [2, 24] and a new monograph [11]. Recently, recovery conditions on

RIP, NSP and s-goodness for SSR have also been successfully extended to the case of LMR,

see, [21, 25, 26, 27]. Recht, Fazel, and Parrilo [25] provided a certain RIP condition on the

linear transformation of LMR, which guarantees that the minimum nuclear norm solution is a

minimum rank solution, they also presented an analysis on the parallels between the cardinality

minimization and rank minimization. Recht, Xu, and Hassibi [27] gave the NSP condition for

LMR, which is also discussed by Oymak et al. in [23]. Note that the NSP is both necessary

and sufficient for exactly recovering a low-rank matrix via nuclear norm minimization problem.

Recently, Chandrasekaran, Recht, Parrilo, and Willsky [8] indicated that a fixed s-rank matrix
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X0 can be recovered if and only if the null space of A does not intersect the tangent cone of

the nuclear norm ball at X0. Kong, Tunçel, and Xiu [21] extended the results of [8], studied the

concept of s-goodness for the sensing matrix in SSR and the linear transformations in LMR,

and established the equivalence of s-goodness and the NSP in the matrix setting.

The study of SREJA is also motivated by the recent development of optimization techniques

on Euclidean Jordan algebras, which provide a foundation for solving SREJA via convex re-

laxation. For details on Euclidean Jordan algebra optimization, see a survey paper [31] and

the papers [13, 14, 20, 22, 29, 30], to name a few. In particular, Recht, Fazel, and Parrilo [25]

mentioned the power of Jordan-algebraic approach and asked whether similar results can be

obtained in the more general framework of Euclidean Jordan algebras. Moreover, since SSR

and LMR are two specific classes of sparse descriptions, they also asked whether there are other

kinds of easy-to-describe parametric models that are amenable to exact solutions via convex

optimizations techniques.

This paper will deal with the following mathematical model of SREJA:

min rank(x), s.t. Ax = b, (1)

where rank (x) is the rank of an element x in a Euclidean Jordan algebra V(see details in Section

2), A : V → Rm is a linear transformation (operator), and b ∈ Rm. We define the convex

relaxation of SREJA as nuclear norm minimization on Euclidean Jordan algebra (NNMEJA):

min ‖x‖∗ s.t. Ax = b, (2)

where ‖x‖∗ is the nuclear norm of an element x ∈ V. Assume the solutions to (1) and (2) exist.

We will study the properties of rank (x) and ‖x‖∗ based on the necessary concepts in Euclidean

Jordan algebra. Then, we introduce and study the three important recovery conditions related to

the restricted isometry property (RIP), the null space property (NSP) and s-goodness. We show

that RIP provides a sufficient condition for every s-sparse vector to be the unique solution to

NNMEJA, while both s-goodness and NSP are necessary and sufficient conditions for recovering

the low-rank solution exactly via NNMEJA. Employing the proposed conditions, we give the

exact and stable recovery results via NNMEJA. These results extend the similar results from SSR
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and LMR to the general setting of Euclidean Jordan algebras, and we therefore give affirmative

answers to the open questions in [25].

This paper is organized as follows. In Section 2, we briefly review some concepts and results

on Euclidean Jordan algebras. Then we develop some properties of the rank and nuclear norm

operators which are useful in providing the sparse recovery condition for SREJA via NNMEJA.

In Section 3, we introduce the restricted isometry property (RIP), null space property (NSP) and

s-goodness properties for linear transformations in SREJA, and discuss their close connections.

In Section 4, applying the proposed the recovery conditions, we establish the exact and stable

recovery results for SREJA via NNMEJA. Section 5 concludes this paper with some remarks.

2 Preliminaries

We review some necessary concepts and results on Euclidean Jordan algebras. In particular,

we develop some topological properties of the rank and nuclear norm, which are useful in our

analysis on the sparse recovery condition via convex optimization problem in the setting of

Euclidean Jordan algebra. Details of basic concepts on Euclidean Jordan algebras can be found

in Koecher’s lecture notes [19] and the monograph by Faraut and Korányi [12].

2.1 Euclidean Jordan algebras

Let V be a n-dimensional vector space over R and (x, s) 7→ x ◦ s : V × V → V be a bilin-

ear mapping. We call (V, ◦) a Jordan algebra iff the bilinear mapping satisfies the following

conditions:

(i) x ◦ s = s ◦ x for all x, s ∈ V,

(ii) x ◦ (x2 ◦ s) = x2 ◦ (x ◦ s) for all x, s ∈ V,

where x2 := x ◦ x and x ◦ s is the Jordan product of x and s. In general, there may exist

x, s, z ∈ V , such that (x ◦ s) ◦ z 6= x ◦ (s ◦ z). We call an element e the identity element if and

only if z ◦ e = e ◦ z = z for all z ∈ V . A Jordan algebra (V, ◦) with an identity element e is

4



called a Euclidean Jordan algebra, denoted by V := (V, 〈·, ·〉, ◦), if and only if there is an inner

product, 〈·, ·〉, such that

〈x ◦ s, z〉 = 〈x, s ◦ z〉 for all x, s, z ∈ V.

Given a Euclidean Jordan algebra V, define the set of squares as K := {z2 : z ∈ V}. It is known

by Theorem III 2.1 in [12] that K is the symmetric cone, i.e., K is a closed, convex, homogeneous

and self-dual cone.

For z ∈ V, the degree of z denoted by deg(z) is the smallest positive integer k, such that the

set {e, z, z2, · · · , zk} is linearly dependent. The rank of V is defined as max{deg(z) : z ∈ V}.

In this paper, r will denote the rank of the underlying Euclidean Jordan algebra. An element

q ∈ V is an idempotent if and only if q2 = q, it is called primitive if and only if it is nonzero

and cannot be written as a sum of two nonzero idempotents. A complete system of orthogonal

idempotents is a finite set {q1, q2, · · · , qk} of idempotents where qi ◦ qj = 0 for all i 6= j, and

q1 + q2 + · · ·+ qk = e. A Jordan frame is a complete system of orthogonal primitive idempotents

in V. Note that the number of elements in every Jordan frame is r.

We state below the spectral decomposition theorem for the elements on a Euclidean Jordan

algebra.

Theorem 2.1 (Spectral Decomposition Type II (Theorem III.1.2, [12])) Let V be a Euclidean

Jordan algebra with rank r. Then for z ∈ V there exist a Jordan frame {q1, q2, · · · , qr} and real

numbers λ1(z) ≥ λ2(z) ≥ · · · ≥ λr(z), such that

z = λ1(z)q1 + λ2(z)q2 + · · ·+ λr(z)qr. (3)

The numbers λi(z) (i ∈ {1, 2, · · · , r}) are the eigenvalues of z. We call (3) the spectral decom-

position (or the spectral expansion) of z.

Observe that the Jordan frame {q1, q2, · · · , qr} in (3) depends on z. We do not write this

dependence explicitly for the simplicity of notation (the same for {e1, e2, · · · , er̄} below). Let

C(z) be the set consisting of all Jordan frames in the spectral decomposition of z. Let the
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spectrum σ(z) be the set of all eigenvalues of z. Then σ(z) = {µ1(z), µ2(z), · · · , µr̄(z)} and for

each µi(z) ∈ σ(z), denoting Ni(z) := {j : λj(z) = µi(z)} we obtain that ei =
∑

j∈Ni(z) qj and ei

is idempotent but may not be primitive. By Theorem III.1.1 in [12], {e1, e2, · · · , er̄} is a unique

complete system of orthogonal idempotents, such that

z = µ1(z)e1 + · · ·+ µk(z)er̄.

Let g : R→ R be a real-valued function. Define the vector-valued function G : V → V as

G(z) :=

r∑
i=1

g(λi(z))qi = g(λ1(z))q1 + g(λ2(z))q2 + · · ·+ g(λr(z))qr, (4)

which is a Löwner operator. In particular, letting t+ := max{0, t}, t− := min{0, t} (t ∈ R), we

respectively define

ΠK(z) := z+ :=
r∑
i=1

(λi(z))+qi, z− :=
r∑
i=1

(λi(z))−qi.

In words, z+ is the metric projection of z onto K, and z− is the metric projection of z onto

−K, where the norm is defined by ‖z‖V :=
√
〈z, z〉. Note that z ∈ K (z ∈ int(K)) if and only

if λi(z) ≥ 0 (λi(z) > 0) ∀i ∈ {1, 2, · · · , r}, where int(K) denotes the interior of K. It is easy to

verify that

z+ ∈ K, − z− ∈ K, z = z+ − z−. (5)

Next, we recall the Peirce decomposition on the space V = (V, 〈·, ·〉, ◦). Let q ∈ V be a

nonzero idempotent. Then V is the orthogonal direct sum of V (q, 0), V (q, 1
2) and V (q, 1), where

V (q, ε) := {x ∈ V : q ◦ x = εx}, ε ∈
{

0,
1

2
, 1

}
.

This is called the Peirce decomposition of V with respect to the nonzero idempotent q. Fix a

Jordan frame {q1, q2, · · · , qr}. Defining the following subspaces for i, j ∈ {1, 2, · · · , r},

Vii := {x ∈ V : x ◦ qi = x} and Vij :=

{
x ∈ V : x ◦ qi =

1

2
x = x ◦ qj

}
, i 6= j,

we have the Peirce decomposition theorem as follows.
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Theorem 2.2 (Theorem IV.2.1, [12]) Let {q1, q2, · · · , qr} be a given Jordan frame in a Eu-

clidean Jordan algebra V of rank r. Then V is the orthogonal direct sum of spaces Vij (i ≤ j).

Furthermore,

(i) Vij ◦ Vij ⊆ Vii + Vjj;

(ii) Vij ◦ Vjk ⊆ Vik, if i 6= k;

(iii) Vij ◦ Vkl = {0}, if {i, j} ∩ {k, l} = Ø.

Based on Theorems 2.1 and 2.2, we will introduce a decomposition result for the space V

with respect to a point z ∈ V. First, we need the following two important operators. For

each z ∈ V, we define the Lyapunov transformation L(z) : V → V by L(z)x = z ◦ x for all

x ∈ V, which is a symmetric self-adjoint operator in the sense that 〈L(z)x, s〉 = 〈x,L(z)s〉 for all

x, s ∈ V. The operator Q(z) := 2L2(z) − L(z2) is called the quadratic representation of z. We

say two elements x, s ∈ V operator commute if and only if L(x)L(s) = L(s)L(x). By Lemma

X.2.2 in [12], two elements x, s operator commute if and only if they share a common Jordan

frame. In the matrix algebra of Hermitian matrices, this corresponds to two matrices admitting

a simultaneous diagonalization with respect to an orthogonal basis.

2.2 Rank and Nuclear Norm

We first recall the definitions of the rank and the nuclear norm of an element z in V. Let

z =
∑r

i=1 λi(z)qi with the eigenvalue vector λ(z). It is known that the inertia of z is defined by

In (z) := (I+(z), I−(z), I0(z)),

where I+(z), I−(z), and I0(z) are, respectively, the number of eigenvalues of z which are positive,

negative, and zero, counting multiplicities. We define the rank of z by

rank (z) := I+(z) + I−(z).

Clearly, rank (z) = ‖λ(z)‖0, i.e., the rank of z is the l0-norm of its eigenvalue vector λ(z). Beside

‖z‖V , we specify another important norm of z, the nuclear norm ‖z‖∗, by the l1-norm of its
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eigenvalue vector λ(z), while ‖z‖V is equal to l2-norm of λ(z). Thus,

‖z‖V = ‖λ(z)‖2, ‖z‖∗ = ‖λ(z)‖1.

Now, we present some rank inequalities, which are useful in the analysis of recovery condi-

tions.

Lemma 2.3 For any x ≥ 0 and y ≥ 0,

rank (x± y) ≤ rank (x) + rank (y). (6)

The equality holds in (6) when x and y operator commute and x ◦ y = 0.

Proof. Case 1 If x and y operator commute, then it is easy to verify that (6) holds.

Case 2 If x and y do not operator commute, then there exits d > 0 such that Qd(x) and

Qd(y) operator commute by Lemma 1 in [16]. Note that Qd(x) ≥ 0 and Qd(y) ≥ 0. Thus,

rank (Qd(x)±Qd(y)) ≤ rank (Qd(x)) + rank (Qd(y)).

Since In (Qd(x)) = In (x) and In (Qd(y)) = In (y) by Theorem 11 in [15], (6) holds.

It is easy to verify that the equality holds in (6) when x and y operator commute and

x ◦ y = 0. �

Theorem 2.4 For any x, y ∈ V ,

rank (x± y) ≤ rank (x) + rank (y). (7)

The equality holds in (7) when x and y operator commute and x ◦ y = 0

Proof. From Lemma 2.3, direct calculation yields

rank (x+ y) = rank (x+ − x− + y+ − y−)

= rank (x+ + y+ − (x− + y−))

≤ rank (x+ + y+) + rank (x− + y−)
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≤ rank (x+) + rank (y+) + rank (x−) + rank (y−)

= (rank (x+) + rank (x−)) + (rank (y+) + rank (y−))

= rank (x) + rank (y).

Similarly, we obtain

rank (x− y) = rank (x+ − x− − y+ + y−)

= rank (x+ + y− − (x− + y+))

≤ rank (x+ + y−) + rank (x− + y+)

≤ rank (x+) + rank (y−) + rank (x−) + rank (y+)

= (rank (x+) + rank (x−)) + (rank (y+) + rank (y−))

= rank (x) + rank (y).

It is easy to verify that the equality holds in (7) when x and y operator commute and x ◦ y = 0.

�

Theorem 2.5 Fixing a Jordan frame {e1, e2, . . . , er}. Let c =
∑k

1 ei with k < r. For any

x ∈ V , x = u+ v + w, where u ∈ V (c, 1), v ∈ V (c, 1
2), and w ∈ V (c, 0). Then

rank (u+ w) = rank (u) + rank (w), rank (u+ v) ≤ 2k and rank (v) ≤ 2k. (8)

Proof. It is obvious that rank (u+w) = rank (u) + rank (w). We prove the rank inequalities in

two cases.

Case 1 When u is invertible in V (c, 1).

rank (u+ v) = rank (u+ v + 0)

= rank (u) + rank (0− Pv(u−1))

= k + rank (Pv(u
−1))

≤ k + rank (u−1)

= k + k = 2k.

The above inequality is from Theorem 11 in [15].
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Case 2 When u is not invertible in V (c, 1). Since π and γ are lower semicontinuous on V by

Theorem 10 in [15], we have rank (u + v) ≤ rank (ū + v), where ū is in some neighborhood of

u and invertible in V (c, 1). Hence, rank (u + v) ≤ 2k. Similarly, rank (v) ≤ rank (εc + v) ≤ 2k,

with a small ε > 0. �

The following theorem states a easily-checked sufficient condition for the nuclear norm equal-

ity between two elements.

Theorem 2.6 Let c be an idempotent. For any u ∈ V (c, 1) and w ∈ V (c, 0), it holds

‖u+ w‖∗ = ‖u‖∗ + ‖w‖∗.

Proof By assumptions that u ∈ V (c, 1), w ∈ V (c, 0) and c is an idempotent, there exists a

Jordan frame {e1, e2, · · · , ek, ek+1, · · · , er} such that

c =

k∑
i=1

ei, u =

k∑
i=1

λi(u)ei, and w =

r∑
i=k+1

λi(w)ei,

where k is the rank of subalgebra V (c, 1). Thus, u + w =
∑k

i=1 λi(u)ei +
∑r

i=k+1 λi(w)ei, and

hence the conclusion holds immediately. �

We end this section with the subdifferential property of the nuclear norm. Here we need

recall the spectral function F : V → R generated by a function f : Rr → R if F (z) = f(λ(z))

where λ(z) is the eigenvalue vector of z.

Theorem 2.7 Let w =
∑r

i=1 λi(w)ci be its spectral decomposition where λi(w) 6= 0 for i ∈ J :=

{1, 2, · · · , s}. The subdifferential of the nuclear norm ‖ · ‖∗ is given as

∂‖w‖∗ =

z : z =
∑
i∈J

sign(λi(w))ci +
∑
i∈J̄

λi(z)ei with λi(z) ∈ [−1, 1]

 ,

where {c1, c2, · · · , cs, es+1, · · · , er} is any Jordan frame commonly shared by z and w.

Proof Note that ‖z‖∗ is the spectral function generated by ‖λ(z)‖1. By Corollary 4.4.3 in [1], we

know that ∂‖w‖∗ = {z : λ(z) ∈ ∂‖λ(w)‖1, z and w operate commute} . The desired conclusion

follows from the definition of operate commute and the subdifferential of the l1-norm. �
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3 Recovery Conditions

Applying the concepts and results in the previous section, we will present the sparse recovery

conditions for SREJA via NNMEJA. We mainly focus on the restricted isometry property (RIP),

null space property (NSP), and s-goodness properties. We will discuss their intimate connections

in the setting of Euclidean Jordan algebra. In what follows, we say element z ∈ V is s-sparse

(s-rank) if the rank of z is no more than s.

3.1 Restricted isometry property

We define the s-restricted isometry constant (RIC) δs of a linear transformation A as the smallest

constant such that the following holds for all s-sparse (s-rank) element z ∈ V,

(1− δs)‖z‖2V ≤ ‖Az‖2 ≤ (1 + δs)‖z‖2V ,

where ‖z‖V :=
√
〈z, z〉 is the norm of z induced by inner product in a Euclidean Jordan algebra

V, which is equal to the l2-norm of the vector of singular values of z, ‖ · ‖ is the norm in Rm. It

is easy to see that δs ≤ δt for s < t. For s + s′ ≤ r, the s, s′- restricted orthogonality constant

θs,s′ of A is the smallest constant which satisfies

|〈Ax,Ay〉| ≤ θs,s′‖x‖V‖y‖V ,

for all s-sparse x and s′-sparse y such that x and y operator commute and x ◦ y = 0.

Lemma 3.1 Let A : V → Rm be a linear transformation and b ∈ Rm. If all nonzero elements in

the null space of A are at least (2s+ 1)-sparse, then any s-sparse solution to Ax = b is unique.

Proof We prove the conclusion by contradiction. Suppose that x0 and x∗ are two s-sparse

solutions to SREJA. That is, Ax0 = Ax∗ with rank(x0) ≤ s and rank(x∗) ≤ s. Then rank(x0 −

x∗) ≤ rank(x0) + rank(x∗) ≤ 2s by Theorem 2.5, and A(x0 − x∗) = 0. This is a contradiction

with the assumption. �

We state the RIP condition under which the solution to SREJA is unique.

11



Theorem 3.2 Let A : V → Rm be a linear transformation, x0 ∈ V and b ∈ Rm such that

Ax0 = b. Suppose rank(x0) = s and s < r. If δ2s < 1, then x0 is the unique solution to SREJA.

Proof Suppose there is another s-sparse solution x∗ 6= x0 to SREJA. That is, Ax∗ = b with

rank(x∗) = s. Let h = x∗ − x0. Clearly, rank(h) ≤ rank(x0) + rank(x∗) = 2s by Theorem 2.5,

and Ah = 0. These together with the RIP condition yields 0 = ‖Ah‖2 ≥ (1 − δ2s)‖h‖2V > 0.

This is a contradiction since h 6= 0 and 1− δ2s > 0. �

We are ready to give our RIP recovery result for exact SREJA via its convex relaxation. The

following proof is inspired by those in [3, 6, 25], but our proof is more general and we employ the

Peirce decomposition of a element in V and the Euclidean Jordan algebraic technique results in

Section 2.

Theorem 3.3 Let A : V → Rm be a linear transformation, x0 ∈ V and b ∈ Rm such that

Ax0 = b. Suppose rank(x0) = s and 1 ≤ s < r. If δ3s +
√

2δ4s < 1 or δ4s <
√

2− 1, then x0 is

the common unique solution to SREJA and its convex relaxation NNMEJA.

Proof From assumptions and Theorem 3.2, we obtain that x0 is the unique solution to SREJA.

We remain to show that x0 is also the unique solution to NNMEJA. Suppose there is another

solution x 6= x0 to NNMEJA. Take h = x− x0 and let x0 =
∑s

i=1 λi(x)ci with c =
∑s

i=1 ci, and

x = u+ v+w where u ∈ V (c, 1), v ∈ V (c, 1
2) and w ∈ V (c, 0). Since x0 ∈ V (c, 1), from Theorem

2.6, we obtain that

‖x0 + w‖∗ = ‖x0‖∗ + ‖w‖∗. (9)

Since V (c, 0) forms a Euclidean Jordan algebra with rank r − s, without loss of generality, let

w =
∑r

i=s+1wiei be the spectral decomposition of w in V (c, 0) with |ws+1| ≥ |ws+2| ≥ · · · ≥ |wr|.

Thus, we can decompose w as a sum of hTi(i = 1, 2, · · · , d rse) where

hTi :=

min{r,(i+1)s}∑
j=is+1

wjej .

Then, hT1 is the part of w corresponding to the s largest absolute eigenvalues, and hT2 is the part

of w corresponding to the next s largest absolute eigenvalues, and so on. Clearly, hTi ∈ V (c, 0),

rank(hTi) ≤ s, and hTi , v, u− x0 are all orthogonal one another.
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As the common approaches in CS [3, 6], we proceed the proof in two steps. The first step

shows that ‖
∑

j≥2 hTj‖V is essentially bounded by ‖u−x0 + v‖∗. The second shows that h = 0,

and hence a contradiction.

Step 1: From the above decomposition, we easily obtain that for j ≥ 2,

‖hTj‖V ≤ s1/2‖hTj‖∞ ≤ s−1/2‖hTj−1‖∗,

where ‖hTj‖∞ is the spectral (operator) norm of hTj ∈ V, i.e., its largest absolute eigenvalue.

Then, it follows

∑
j≥2

‖hTj‖V ≤ s−1/2
∑
j≥2

‖hTj−1‖∗ ≤ s−1/2‖w‖∗. (10)

This yields

‖w − hT1‖V =

∥∥∥∥∥∥
∑
j≥2

hTj

∥∥∥∥∥∥
V

≤ s−1/2‖w‖∗. (11)

Moreover, since x is a solution to NNMEJA, we have

‖x0‖∗ ≥ ‖x‖∗ = ‖x0 + h‖∗ = ‖u+ v + w‖∗

= ‖x0 + w + u+ v − x0‖∗

≥ ‖x0 + w‖∗ − ‖u− x0 + v‖∗

= ‖x0‖∗ + ‖w‖∗ − ‖u− x0 + v‖∗.

Therefore,

‖w‖∗ ≤ ‖u− x0 + v‖∗. (12)

It holds by (11) and (12) that

‖w − hT1‖V ≤ s−1/2‖w‖∗ ≤ s−1/2‖u− x0 + v‖∗. (13)

Step 2: We will prove h = 0 by claiming u− x0 + v + hT1 = 0. Let hT0 := u− x0 + v. Then

hT0∪T1 = u− x0 + v + hT1 .
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By Theorem 2.5, we get rank(hT0∪T1) ≤rank(hT0)+rank(hT1) ≤ 3s. Notice that Ah = 0 and

‖A(hT0∪T1)‖2 = 〈A(hT0∪T1),A(h− h(T0∪T1)C )〉

= 〈A(hT0∪T1),Ah〉 −
∑
j≥2

〈A(hT0∪T1),AhTj 〉.

Moreover, ‖A(hT0∪T1)‖2 ≥ (1− δ3s)‖hT0∪T1‖2V , and for j ≥ 2,

−〈A(hT0∪T1),AhTj 〉 ≤ δ4s‖hT0∪T1‖V‖hTj‖V .

Thus, by direct calculations, we obtain that

(1− δ3s)‖hT0∪T1‖2V ≤ ‖AhT0∪T1‖2

≤
∑
j≥2

δ4s‖hT0∪T1‖V‖hTj‖V

= δ4s‖hT0∪T1‖V
∑
j≥2

‖hTj‖V

≤ δ4s‖hT0∪T1‖Vs−1/2‖w‖∗ (by (10))

≤ δ4s‖hT0∪T1‖Vs−1/2‖u− x0 + v‖∗ (by (12))

≤ δ4s‖hT0∪T1‖Vs−1/2
√

2s‖hT0‖V (by rank(hT0) ≤ 2s)

≤
√

2δ4s‖hT0∪T1‖2V .

Therefore, 1− δ3s ≤
√

2δ4s, i.e.,
√

2δ4s + δ3s ≥ 1, a contradiction. Then, hT0∪T1 = 0 and hence

hTj = 0. Thus, h = 0 and we complete the proof. �

The above theorem states that the restricted isometry property provides a sufficient condition

for every s-sparse vector to be the unique solution to NNMEJA. In the next subsection, we will

consider necessary and sufficient conditions for the exact sparse recovery, such as the null space

property (NSP) and s-goodness.

3.2 Null space property

We begin with the definition of the null space property (NSP). We say A satisfies NSP (of order

s) if for every nonzero element w ∈ Null(A) with the spectral decomposition w =
∑r

i=1 λi(w)ci

and for any index set J ⊆ {1, 2, · · · , r} with |J | = s, then∑
i∈J
|λi(w)| <

∑
i∈J̄

|λi(w)|,
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where Null(A) = {x : Ax = 0} denote the null space of A. In the cases of sparse vector recovery

and low-rank matrix recovery, it is well known that the NSP property has been attracted much

attention, see, e.g., [9, 23, 24, 26, 27] and references therein. The following theorem says that

NSP is a necessary and sufficient condition for the sparse recovery in Euclidean Jordan algebra.

Theorem 3.4 Let A : V → Rm be a linear transformation, and 1 ≤ s < r. Then A satisfies

NSP if and only if for any x0 ∈ V with rank(x0) = s, NNMEJA problem with b = Ax0 has an

unique solution and it is given by x = x0.

Proof We first show the “If” part. Consider any h 6= 0 and h ∈ Null(A), write its spectral

decomposition h =
∑r

i=1 λi(h)ci. For any index set J ⊆ {1, 2, · · · , r} with |J | = s, we define

hJ =
∑

i∈J λi(h)ci and hJc =
∑

i∈Jc λi(h)ci. Clearly, AhJ + AhJc = 0. Then consider the

NNMEJA problem:

min ‖x‖∗ s.t. Ax = AhJ . (14)

Thus from the assumption that for any x0 ∈ V with rank(x0) = s, NNMEJA problem with

b = Ax0 has an unique solution given by x = x0, we obtain that hJ is the unique solution to

problem (14) because of rank(hJ) = s. Noting that AhJ = A(−hJc) and h 6= 0, we immediately

get ‖hJc‖∗ > ‖hJ‖∗. That is,
∑

i∈J |λi(h)| <
∑

i∈J̄ |λi(h)|, and hence A satisfies NSP.

We next show the “Only if” part. Suppose that A satisfies NSP. Letting x0 ∈ V with

rank(x0) = s, we need to show NNMEJA problem with b = Ax0 has an unique solution and it

is given by x = x0. If not, we assume there is another solution to NNMEJA, x 6= x0. Clearly,

‖x‖∗ ≤ ‖x0‖∗. Set h = x0 − x. Then ‖x0 − h‖∗ ≤ ‖x0‖∗. From Theorem 3.6.4 in [1], we obtain

that

‖x0 − h‖∗ ≥ ‖λ(x0)− λ(h)‖1. (15)

Since rank(x0) = s, λ(x0) is s-sparse and |J | = s if we take J := supp(λ(x0)). Similarly, we

decompose λ(h) as λ(h) = (λ(h))J + (λ(h))Jc . Thus, we

‖λ(x0)− λ(h)‖1 = ‖λ(x0)− (λ(h))J‖1 + ‖(λ(h))Jc‖1. (16)
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Noting that A satisfies NSP and Ah = 0, we have ‖(λ(h))J‖1 < ‖(λ(h))Jc‖1. Then,

‖λ(x0)− (λ(h))J‖1 + ‖(λ(h))Jc‖1 > ‖λ(x0)− (λ(h))J‖1 + ‖(λ(h))J‖1 ≥ ‖λ(x0)‖1.

This together with (15) and (16) yields

‖x0‖∗ ≥ ‖x0 − h‖∗ > ‖λ(x0)‖1 = ‖x0‖∗.

Hence, we have a contradiction. Thus, we get x0 is the unique solution to NNMEJA problem.

�

3.3 S-goodness Property

We first discuss some concepts related to s-goodness of the linear transformation in SREJA.

They are extensions of those given in the Rn setting [17]. In what follows, for a vector y ∈ Rp,

let ‖ · ‖d be the dual norm of ‖ · ‖ specified by ‖y‖d := maxv{〈v, y〉 : ‖v‖ ≤ 1}. In particular,

‖ · ‖∞ is the dual norm of ‖ · ‖1 for a vector. We denote by XT the transpose of X. For a linear

transformation A : Rm×n → Rp, we denote by A∗ : Rp → Rm×n the adjoint of A.

Definition 3.5 Let A : V → Rm be a linear transformation and s be an integer, s ∈ {1, 2, · · · , r}.

We say that A is s-good, if for every s-rank element w ∈ V, w is the unique optimal solution to

the optimization problem

minx∈V{‖x‖∗ : Ax = Aw}. (17)

To characterize s-goodness we need to introduce the two useful s-goodness constants: G-

numbers γs and γ̂s.

Definition 3.6 Let A : V → Rm be a linear transformation, β ∈ [0,∞] and s be an integer,

s ∈ {1, 2, · · · , r}. We define the s-goodness constants, G-numbers γs(A, β) and γ̂s(A, β), as

follows:

(i) G-number γs(A, β) is the infimum of γ ≥ 0 such that for every element x ∈ V with its

spectral decomposition x =
∑s

i=1 λi(x)ci and λi(x) ∈ {−1, 1} (i.e., s nonzero singular values,
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equal to −1 or 1), there exists a vector y ∈ Rm such that ‖y‖d ≤ β, and A∗y and x operate

commute where A∗y =
∑r

i=1 λi(A∗y)ci with

λi(A∗y)


= λi(x), if λi(x) 6= 0,

∈ [−γ, γ], if σi(x) = 0,

i ∈ {1, 2, · · · , r}.

If there does not exist such y for some x as above, we take γs(A, β) =∞.

(ii) G-number γ̂s(A, β) is the infimum of γ ≥ 0 such that for every element x ∈ V with its

spectral decomposition x =
∑s

i=1 λi(x)ci and λi(x) ∈ {−1, 1} (i.e., s nonzero singular values,

equal to −1 or 1), there exists a vector y ∈ Rm such that ‖y‖d ≤ β, and A∗y and x operate

commute where A∗y =
∑r

i=1 λi(A∗y)ci with

‖A∗y − x‖ ≤ γ. (18)

If there does not exist such y for some x as above, we take γs(A, β) =∞. In that case, we write

γs(A), γ̂s(A) instead of γs(A,∞), γ̂s(A,∞), respectively.

G-numbers of A preserve some nice properties. Clearly, for any nonsingular matrix B ∈

Rm×m, G-numbers γs(A, β) and γ̂s(A, β) are equal to γs(BA, β) and γ̂s(BA, β), respectively.

At the same time, it is not hard to see that G-numbers γs(A, β), γ̂s(A, β) are not only increasing

in s, but also convex nonincreasing functions of β, see [21] for more details. We below observe

the relationship between the G-numbers γs(A, β) and γ̂s(A, β). We omit its proof for brevity,

for details, see the similar argument as in the proof of Theorem 1 in [17] and Proposition 2.5 in

[21].

Proposition 3.7 Let A : V → Rm be a linear transformation, β ∈ [0,∞] and s be an integer,

s ∈ {1, 2, · · · , r}. Then we have

γ := γs(A, β) < 1 ⇒ γ̂s(A,
1

1 + γ
β) =

γ

1 + γ
<

1

2
; (19)

γ̂s := γ̂s(A, β) <
1

2
⇒ γs(A,

1

1− γ̂
) =

γ̂

1− γ̂
< 1. (20)

We are ready to give the following characterization result of s-goodness of a linear transfor-

mation A via G-number γs(A), which explains the importance of γs(A) in SREJA. In the case

of SSR, it reduces to Theorem 1 in [17].
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Theorem 3.8 Let A : V → Rm be a linear transformation, and s be an integer, s ∈ {1, 2, · · · , r}.

Then the following statements are equivalent.

i) A is s-good.

ii) γs(A) < 1.

iii) γ̂s(A) < 1/2.

Proof. In terms of G-numbers γ̂s(A), γ̂s(A), we directly obtain the following equivalence of (ii)

and (iii) from Proposition 3.7. We only need to show that A is s-good if and only if γs(A) < 1.

Suppose that A is s-good, and let us prove that γs(A) < 1. Let w ∈ V be an element of rank

s, s ∈ {1, 2, · · · , r}, write w =
∑s

i=1 λi(w)ci as a spectral decomposition where λi(w) 6= 0 for

i ∈ J := {1, 2, · · · , s}. By the definition of s-goodness of A, w is the unique solution to the

optimization problem (17). From the first optimality conditions, we obtain that for certain

y ∈ Rm the function fy(x) = ‖x‖∗ − yT [Ax − Aw] attains its minimum over x ∈ V at x = w.

So, 0 ∈ ∂fy(w), or A∗y ∈ ∂‖w‖∗. From Theorem 2.7, it follows that there exists a Jordan frame

{c1, · · · , cs, cs+1, · · · , cr} such that A∗y =
∑r

i=1 λi(A∗y)ci where

λi(A∗y)


= sign(λi(w)), if i ∈ J,

∈ [−1, 1], if i ∈ J̄ ,

where J̄ = {1, 2, · · · , r} \ J . Therefore, the linear optimization problem

min
y,γ

γ : λi(A∗y)


= sign(λi(w)), if i ∈ J,

∈ [−γ, γ], if i ∈ J̄ ,

 (21)

has optimal value no more than 1. We will show that the optimal value is less than 1. In fact,

assuming that the optimal value equals 1, there should exist Lagrange multipliers {µi : i ∈ J},

{ν+
i ≥ 0 : i ∈ J̄} and {ν−i ≥ 0 : i ∈ J̄} such that the function

L(γ, y) := γ +
∑
i∈J̄

[(ν+
i (λi(A∗y)− γ)) + (ν+

i (λi(−A∗y)− γ))] +
∑
i∈J

µi[λi(A∗y)− sign(λi(w))]

has unconstrained minimum in γ, y equal to 1 (see, e.g., [28]). For the Jordan frame {c1, · · · , cs, cs+1, · · · , cr},

setting d =
∑

i∈J µici +
∑

i∈J̄(ν+
i + ν−i )ci and 〈Ad, y〉 = 〈d,A∗y〉 =

∑
i∈J̄ [(ν+

i − ν
+
i )λi(A∗y)] +
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∑
i∈J µiλi(A∗y), we reformulate the above function as

L(γ, y) = γ − γ
∑
i∈J̄

(ν+
i + ν−i ) + 〈Ad, y〉 −

∑
i∈J

µisign(λi(w)).

This claims that

1.
∑

i∈J̄(ν+
i + ν−i ) = 1,

2.
∑

i∈J µisign(λi(w)) = −1,

3. Ad = 0.

Clearly, d and w share the Jordan frame {c1, · · · , cs, cs+1, · · · , cr}. Thus, for small enough t > 0,

the matrices xt := w + td are feasible to (17). From the above equations, we easily obtain that

‖xt‖∗ = ‖w‖∗ for all small enough t. Noting that w is the unique optimal solution to (17), we

have xt = w, which means that µi = 0 for i ∈ J . This is a contradiction, and hence the desired

conclusion holds.

We next prove that A is s-good if γs(A) < 1. That is, letting w be s-rank, we should prove

that w is the unique optimal solution to (17). Without loss of generality, let w be an element

of rank s′ 6= 0 and w =
∑s′

i=1 λi(w)ci. It follows γs′(A) ≤ γs < 1. By the definition of γs(A),

there exists y ∈ Rm ‖y‖d ≤ β, and A∗y and x operate commute where A∗y =
∑r

i=1 λi(A∗y)ci =∑s′

i=1 sign(λi(w))ci +
∑r

i=s′+1 λi(A∗y)ci with λi(A∗y) ∈ [−γs′(A), γs′(A)] for i ∈ {s′ + 1, · · · , r}.

Then, A∗y and x share the Jordan frame {c1, · · · , cs′ , cs′+1, · · · , cr}. The function

f(x) = ‖x‖∗ − yT [Ax−Aw] = ‖x‖∗ − 〈A∗y, x〉+ ‖w‖∗

becomes the objective of (17) on its feasible set. Note that 〈A∗y, x〉 ≤ ‖x‖∗ by ‖A∗y‖ ≤ 1 and

the definition of dual norm. So, f(x) ≥ ‖x‖∗−‖x‖∗+ ‖w‖∗ = ‖w‖∗ and this function attains its

unconstrained minimum in x at x = w. Hence x = w is an optimal solution to (17). It remains

to show that this optimal solution is unique. Let z be another optimal solution to the problem.

Then f(z)− f(w) = ‖z‖∗− yTAz = ‖z‖∗− 〈A∗y, z〉 = 0. This together with the fact ‖A∗y‖ ≤ 1

derives that there exists a Jordan frame {e1, · · · , es′ , es′+1, · · · , er} for A∗y and z such that

A∗y =
r∑
i=1

λi(A∗y)ei, z =
r∑
i=1

λi(z)ei,
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where λi(z) = 0 if λi(A∗y) 6= ±1. Thus, for λi(A∗y) = 0(i ∈ {s′ + 1, · · · , r}, we must have

λi(z) = λi(w) = 0. By the two Jordan frames of A∗y as above,
∑s′

i=1 ci =
∑s′

i=1 ei. Then,

V (
∑s′

i=1 ci, 1) = V (
∑s′

i=1 ei, 1). So, w, z ∈ V (
∑s′

i=1 ci, 1) because of w =
∑s′

i=1 λi(w)ci and

z =
∑s′

i=1 rλi(z)ei. Thus, z − w ∈ V (
∑s′

i=1 ci, 1) and the rank of z − w is no more than s′ ≤ s.

Since rs(A) < 1, there exists ỹ such that

σi(A∗ỹ)


= sign(λi(z − w)), if λi(z − w) 6= 0,

∈ (−1, 1), if σi(z − w) = 0.

Therefore, 0 = ỹTA(z−w) = 〈A∗ỹ, z−w〉 = ‖z−w‖∗. Then z = w. The proof is completed. �

3.4 S-goodness, NSP and RIP

This section deals with the connections between s-goodness, the null space property (NSP) and

the restricted isometry property (RIP). We begin with giving the equivalence between NSP and

G-number γ̂s(A) < 1/2.

Proposition 3.9 For the linear transformation A, γ̂s(A) < 1/2 if and only if A satisfies NSP.

Proof. We first give an equivalent representation of the G-number γ̂s(A, β). We define a

compact convex set first:

Ps := {z ∈ V : ‖z‖∗ ≤ s, ‖z‖ ≤ 1}.

Let Bβ := {y ∈ Rm : ‖y‖d ≤ β} and B := {x ∈ V : ‖x‖ ≤ 1}. By definition, γ̂s(A, β) is the

smallest γ such that the closed convex set Cγ,β := A∗Bβ + γB contains all elements with s

nonzero eigenvalues, all equal to −1 or 1. Equivalently, Cγ,β contains the convex hull of these

elements, namely, Ps. Note that γ satisfies the inclusion Ps ⊆ Cγ,β if and only if for every x ∈ V,

max
z∈Ps
〈z, x〉 ≤ max

y∈Cγ,β
〈y, x〉 = max

y∈Rm,w∈V
{〈x,A∗y〉+ γ〈x,w〉 : ‖y‖d ≤ β, ‖w‖ ≤ 1}

= β‖Ax‖+ γ‖x‖∗. (22)

For the above, we adopt the convention that whenever β = +∞, β‖Ax‖ is defined to be +∞ or

0 depending on whether ‖Ax‖ > 0 or ‖Ax‖ = 0. Thus, Ps ⊆ Cγ,β if and only if maxz∈Ps{〈z, x〉−
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β‖Ax‖} ≤ γ‖x‖∗. Using the homogeneity of this last relation with respect to x, the above is

equivalent to

max
z,x
{〈z, x〉 − β‖Ax‖ : z ∈ Ps, ‖x‖∗ ≤ 1} ≤ γ.

Therefore, we obtain γ̂s(A, β) = maxz,x{〈z, x〉 − β‖Ax‖ : z ∈ Ps, ‖x‖∗ ≤ 1}. Furthermore,

γ̂s(A) = max
z,x
{〈z, x〉 : z ∈ Ps, ‖x‖∗ ≤ 1,Ax = 0}. (23)

For x ∈ V with Ax = 0, let x =
∑r

i=1 λi(x)ci with |λ1(x)| ≥ |λ2(x)| ≥ · · · ≥ |λr(x)|. Then

we obtain the sum of the s largest eigenvalues of x as

‖x‖s,∗ := max
z∈Ps
〈z, x〉.

From (23), we immediately obtain that γ̂s(A) is the best upper bound on ‖x‖s,∗ of elements

x ∈ Null(A) such that ‖x‖∗ ≤ 1. Therefore, γ̂s(A) < 1/2 implies that the maximum of ‖ · ‖s,∗-

norms of x ∈ Null(A) with ‖x‖∗ = 1 is less than 1/2. That is,
∑s

i=1 |λi(x)| < 1/2
∑r

i=1 |λi(x)|.

Thus,
∑s

i=1 |λi(x)| <
∑r

i=s+1 |λi(x)| and hence A satisfies NSP. It is easy to see that A satisfies

NSP means γ̂s(A) < 1/2. Thus, we obtain the desired results. �

We next consider the connection between restricted isometry constants and G-number of

the linear transformation in SREJA. It is well known that, for a nonsingular transformation

B ∈ Rm×m, the RIP constants of A and BA can be very different, as shown by Zhang in[32]

for the special Rn case. However, the s-goodness properties of A and BA are always same for

a nonsingular matrix B ∈ Rm×p as in subsection 3.3.

Theorem 3.10 δ4s <
√

2− 1⇒ A satisfies NSP ⇔ γ̂s(A) < 1/2⇔ γs(A) < 1⇔ A is s-good.

Proof. It holds from Theorem 3.3, Proposition 3.9 and Theorems 3.8. �

The above theorem says that both s-goodness and NSP are necessary and sufficient conditions

for recovering the low-rank solution exactly via nuclear norm minimization in Euclidean Jordan

algebra, which are weaker than RIP.
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4 Exact and Stable Recovery

This section study the exact and stable recovery results via NNMEJA under some condition

based on the concepts given in previous section. We first state RIP implications for sparse

recovery, which extend Theorems 1.1 and 1.2 in [3, 6]. We omit the proof, since it is similar

to that of Theorem 3.3. Let w =
∑r

i=1 λi(w)ei, where λ(w) = (λ1(w), · · · , λr(w))T with its

eigenvalues |λ1(w)| ≥ · · · ≥ |λr(w)|. Set ws :=
∑s

i=1 λi(w)ci. Clearly, in terms of nuclear norm,

ws stands for the best s-rank approximation of w.

Theorem 4.1 Let A : V → Rm be a linear transformation, s be an integer, s ∈ {1, 2, · · · , r}.

Let w be a element in V such that ‖Aw− b‖ ≤ ε with ε ≥ 0 and let x be the optimal solution to

the problem minx{‖x‖∗ : ‖Ax− b‖ ≤ ε}. If δ3s +
√

2δ4s < 1 or δ4s <
√

2− 1, then it holds that

‖x− w‖V ≤ C1‖w − ws‖∗ + C0ε, (24)

for some constants C0 > 0, C1 > 0. In particular, when w is s-rank and Aw = b without noise,

the recovery is exact x = w.

Here and below, we mainly consider the exact and stable s-sparse recovery results based on

G-numbers γs(A) and γ̂s(A), which are responsible for s-goodness of a linear transformation A.

Observe that the definition of s-goodness of a linear transformation A tells that whenever the

observation b in the following

ŵ ∈ argminx{‖x‖∗ : ‖Ax− b‖ ≤ ε} (25)

is noiseless and comes from a s-rank element w : b = Aw, w should be the unique optimal

solution of the above optimization problem (25) where ε is set to 0. This establishes a sufficient

condition for the precise SREJA of an s-rank element w in the “ideal case” when there is no

measurement error and the optimization problem (17) is solved exactly.

Theorem 4.2 Let A : V → Rm be a linear transformation, s be an integer, s ∈ {1, 2, · · · , r}.

Let w be s-rank and Aw = b. If γ̂s(A) < 1/2, then w is the unique solution to SREJA (1), i.e.,

the solution to SREJA can be exactly recovered from Problem (17).
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Proof. By the definition of s-goodness of a linear transformation A, the assumption that

Aw = b and rank(w) ≤ s implies that w is the unique solution to problem (17). We remain

to show that w is the unique solution to problem (1). Suppose there is an another solution z

to problem (1). Then Aw = Az = b. By the s-goodness of A, the problem min{‖x‖∗ : Ax =

Aw} ≈ min{‖x‖∗ : Ax = Az} has a unique solution, hence z = w and a contradiction. This

completes the proof. �

We continue to show that the same quantities γ̂s(A) (γs(A)) control the error of low-rank

recovery in the case when the element w ∈ V is not s-rank and the problem (17) is not solved

exactly.

Theorem 4.3 Let A : V → Rm be a linear transformation, s be an integer, s ∈ {1, 2, · · · , r},

and γ̂s(A) < 1/2. Let w be a element such that Aw = b. Let x be a υ-optimal approximate

solution to the problem (17), meaning that

Ax = Aw and ‖x‖∗ ≤ Opt (Aw) + υ,

where Opt(Aw) is the optimal value of (17). Then

‖x− w‖∗ ≤
υ + 2‖w − ws‖∗

1− 2γ̂s(A)
.

Proof. Let h := w − x and its spectral decomposition h =
∑r

i=1 λi(h)ci. By assumption,

‖x‖∗ = ‖w − h‖∗ ≤ ‖w‖∗ + υ. By Theorem 3.6.4 in [1], ‖w − h‖∗ ≥ ‖λ(w)− λ(h)‖1. We define

W :=
∑r

i=1 λi(w)ci and X := W−h. That is, X =
∑r

i=1(λi(w)−λi(h))ci. Clearly, ‖X‖∗ ≤ ‖x‖∗

and ‖W‖∗ = ‖w‖∗. From Ah = 0 and ‖x‖∗ ≤ ‖w‖∗ + υ, we obtain

AX = AW and ‖X‖∗ ≤ ‖W‖∗ + υ.

It is easy to verify that hs = W s − Xs and ‖hs‖∗ ≤ ‖h‖s,∗. Along with the fact Ah = 0 and

(23), this derives

‖hs‖∗ ≤ ‖h‖s,∗ ≤ γ̂s(A)‖h‖∗. (26)

On the other hand, noting that ‖W‖∗ + υ = ‖w‖∗ + υ ≥ ‖w− h‖∗ = ‖x‖∗ ≥ ‖X‖∗ = ‖W − h‖∗,

we obtain

‖w‖∗ + υ ≥ ‖W − h‖∗
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≥ ‖W s − (h− hs)‖∗ − ‖W −W s − hs‖∗

= ‖W s‖∗ + ‖h− hs‖∗ − ‖W −W s‖∗ − ‖hs‖∗

= ‖ws‖∗ + ‖h− hs‖∗ − ‖w − ws‖∗ − ‖hs‖∗, (27)

where the first equality holds from Theorem 2.6. This is equivalent to

‖h− hs‖∗ ≤ ‖hs‖∗ + 2‖w − ws‖∗ + υ.

Therefore, we obtain

‖h‖∗ ≤ ‖hs‖∗ + ‖h− hs‖∗ ≤ 2‖hs‖∗ + 2‖w − ws‖∗ + υ

≤ 2γ̂s(A)‖h‖∗ + 2‖w − ws‖∗ + υ.

Since γ̂s(A) < 1/2, we get the desired conclusion. �

We next consider approximate solutions x to the problem

Opt (b) = min
x∈V
{‖x‖∗ : ‖Ax− b‖ ≤ ε} (28)

where ε ≥ 0 and

b = Aw + ζ, ζ ∈ Rm

with ‖ζ‖ ≤ ε. We will show that in the “non-ideal case”, when w is “nearly s-rank” and (28) is

solved to near-optimality, the error of the SREJA via NNMEJA remains “under control”, which

is governed by γ̂s(A, β) with a finite β.

Theorem 4.4 Let A : V → Rm be a linear transformation, and s be an integer, s ∈ {1, 2, · · · , r},

and let β ∈ [0,∞] such that γ̂ := γ̂s(A, β) < 1/2. Let ε ≥ 0 and let w and b in (28) be such that

‖Aw − b‖ ≤ ε, and let ws be defined in the beginning of this section. Let x be a (ϑ, υ)-optimal

approximate solution to the problem (28), meaning that

‖Ax− b‖ ≤ ϑ and ‖x‖∗ ≤ Opt (b) + υ,

then

‖x− w‖∗ ≤
2β(ϑ+ ε) + 2‖w − ws‖∗ + υ

1− 2γ̂
(29)

24



Proof. Note that w is a feasible solution to (28). Let h = w − x. As in the proof or Theorem

4.3, we obtain that ‖h(s)‖∗ ≤ ‖h‖s,∗ and

‖h‖∗ ≤ 2‖h(s)‖∗ + 2‖w − ws‖∗ + υ.

Employing (22) in the proof of Proposition 3.9, we derive

‖h‖s,∗ ≤ β‖Ah‖+ γ̂‖h‖∗ ≤ β(ϑ+ ε) + γ̂‖h‖∗, (30)

where the last inequality holds by ‖Ah‖ = ‖Aw−b+b−Ax‖ ≤ ‖Aw−b‖+‖b−Ax‖. Combining

with the above inequalities, we obtain

‖h‖∗ ≤ 2β(ϑ+ ε) + 2γ̂‖h‖∗ + 2‖w − ws‖∗ + υ.

The desired conclusion holds from the assumption γ̂ < 1/2. �

Theorem 4.4 tells that the error bound (29) for imperfect low-rank recovery can be bounded

in terms of γ̂s(A, β), β, measurement error ε, “s-tail” ‖w − ws‖∗ and the inaccuracy (ϑ, υ) to

which the estimate solves the program (28).

5 Concluding remarks

In this paper, we studied the restricted isometry property, null space property, and s-goodness for

linear transformations in the sparse recovery on Euclidean Jordan algebra (SREJA). The Jordan-

algebraic techniques are extensively employed in this study. We showed that both s-goodness and

NSP are necessary and sufficient conditions for exact s-sparse recovery via its convex relaxation

NNMEJA, which are weaker than the RIP conditions. Applying the characteristic properties

of the proposed conditions, we establish the stable SREJA results via NNMEJA. Our results

affirmatively answered the open questions proposed by Recht, Fazel, and Parrilo in [25].
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