4,472 research outputs found

    The Nonlinear Permittivity Including Non-Abelian Self-interaction of Plasmons in Quark-Gluon Plasma

    Get PDF
    By decomposing the distribution functions and color field to regular and fluctuation parts, the solution of the semi-classical kinetic equations of quark-gluon plasma is analyzed. Through expanding the kinetic equations of the fluctuation parts to third order, the nonlinear permittivity including the self-interaction of gauge field is obtained and a rough numerical estimate is given out for the important \vk =0 modes of the pure gluon plasma.Comment: 7 pages, shortened version accepted by Chin.Phys.Let

    Changes in endogenous hormone concentrations during inflorescence induction and development in pineapple (Ananas comosus cv. Smooth Cayenne) by ethephon

    Get PDF
    This study investigated the changes of five endogenous hormones in the shoot apex and the white bases of D-leaf during the inflorescence induction and development of ‘Smooth Cayenne’ pineapple, using 14-month-old pot-grown plants as material and ethephon as flower forcing agent. Results showed that application of ethephon increased the level of endogenous ethylene (C2H4), abscisic acid (ABA) and 2-isopentyl adenine (2-iP) while it decreased the concentration of indole-3-acetic acid (IAA), gibberellic acid (GA3) and zeatin (ZT), and led to the transition of vegetative growth to inflorescence initiation. After inflorescence initiation, the contents of C2H4, ABA and 2-iP declined but the contents of IAA, ABA and ZT increased. These results indicated that low levels of IAA, GA3 and ZT and high levels of C2H4, ABA and 2-iP facilitated inflorescence initiation, while high levels of ZT, IAA and GA3 and low levels of C2H4 and ABA facilitated inflorescence development.Key words: Pineapple, inflorescence initiation, inflorescence development, endogenous hormone

    Non-Abelian Collective Excitations in Unlinearized Quark-Gluon Plasma Media

    Get PDF
    We study the effect of unlinearized medium on the collective excitations in quark-gluon plasma. We present two kinds of non-Abelian oscillation solutions which respectively correspond to weakly and strongly nonlinear coupling of field components in color space. We also show that the weakly nonlinear solution is similar to Abelian-like one but has the frequency shift, which is of order g2Tg^2T, from eigenfrequency.Comment: 7 page

    Does the crowd support innovation? Innovation claims and success on kickstarter

    Get PDF
    Online crowdfunding is a popular new tool for raising capital to commercialize product innovation. Product innovation must be both novel and useful (1-4). Therefore, we study the role of novelty and usefulness claims on Kickstarter. Startlingly, we find that a single claim of novelty increases project funding by about 200%, a single claim of usefulness increases project funding by about 1200%, and the co-occurrence of novelty and usefulness claims lowers funding by about 26%. Our findings are encouraging because they suggest the crowd strongly supports novelty and usefulness. However, our findings are disappointing because the premise of crowdfunding is to support projects that are innovative, i.e. that are both novel and useful, rather than projects that are only novel or only useful

    An automated growth enclosure for metabolic labeling of Arabidopsis thaliana with 13C-carbon dioxide - an in vivo labeling system for proteomics and metabolomics research

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Labeling whole <it>Arabidopsis (Arabidopsis thaliana) </it>plants to high enrichment with <sup>13</sup>C for proteomics and metabolomics applications would facilitate experimental approaches not possible by conventional methods. Such a system would use the plant's native capacity for carbon fixation to ubiquitously incorporate <sup>13</sup>C from <sup>13</sup>CO<sub>2 </sub>gas. Because of the high cost of <sup>13</sup>CO<sub>2 </sub>it is critical that the design conserve the labeled gas.</p> <p>Results</p> <p>A fully enclosed automated plant growth enclosure has been designed and assembled where the system simultaneously monitors humidity, temperature, pressure and <sup>13</sup>CO<sub>2 </sub>concentration with continuous adjustment of humidity, pressure and <sup>13</sup>CO<sub>2 </sub>levels controlled by a computer running LabView software. The enclosure is mounted on a movable cart for mobility among growth environments. <it>Arabidopsis </it>was grown in the enclosure for up to 8 weeks and obtained on average >95 atom% enrichment for small metabolites, such as amino acids and >91 atom% for large metabolites, including proteins and peptides.</p> <p>Conclusion</p> <p>The capability of this labeling system for isotope dilution experiments was demonstrated by evaluation of amino acid turnover using GC-MS as well as protein turnover using LC-MS/MS. Because this 'open source' <it>Arabidopsis </it><sup>13</sup>C-labeling growth environment was built using readily available materials and software, it can be adapted easily to accommodate many different experimental designs.</p

    A Novel Vertebral Stabilization Method for Producing Contusive Spinal Cord Injury

    Get PDF
    Clinically-relevant animal cervical spinal cord injury (SCI) models are essential for developing and testing potential therapies; however, producing reliable cervical SCI is difficult due to lack of satisfactory methods of vertebral stabilization. The conventional method to stabilize the spine is to suspend the rostral and caudal cervical spine via clamps attached to cervical spinous processes. However, this method of stabilization fails to prevent tissue yielding during the contusion as the cervical spinal processes are too short to be effectively secured by the clamps (Figure 1). Here we introduce a new method to completely stabilize the cervical vertebra at the same level of the impact injury. This method effectively minimizes movement of the spinal column at the site of impact, which greatly improves the production of consistent SCIs. We provide visual description of the equipment (Figure 2-4), methods, and a step-by-step protocol for the stabilization of the cervical 5 vertebra (C5) of adult rats, to perform laminectomy (Figure 5) and produce a contusive SCI thereafter. Although we only demonstrate a cervical hemi-contusion using the NYU/MASCIS impactor device, this vertebral stabilization technique can be applied to other regions of the spinal cord, or be adapted to other SCI devices. Improving spinal cord exposure and fixation through vertebral stabilization may be valuable for producing consistent and reliable injuries to the spinal cord. This vertebral stabilization method can also be used for stereotactic injections of cells and tracers, and for imaging using two-photon microscopy in various neurobiological studies

    Molecular scale contact line hydrodynamics of immiscible flows

    Full text link
    From extensive molecular dynamics simulations on immiscible two-phase flows, we find the relative slipping between the fluids and the solid wall everywhere to follow the generalized Navier boundary condition, in which the amount of slipping is proportional to the sum of tangential viscous stress and the uncompensated Young stress. The latter arises from the deviation of the fluid-fluid interface from its static configuration. We give a continuum formulation of the immiscible flow hydrodynamics, comprising the generalized Navier boundary condition, the Navier-Stokes equation, and the Cahn-Hilliard interfacial free energy. Our hydrodynamic model yields interfacial and velocity profiles matching those from the molecular dynamics simulations at the molecular-scale vicinity of the contact line. In particular, the behavior at high capillary numbers, leading to the breakup of the fluid-fluid interface, is accurately predicted.Comment: 33 pages for text in preprint format, 10 pages for 10 figures with captions, content changed in this resubmissio

    Bcl-x Pre-mRNA splicing regulates brain injury after neonatal hypoxia-ischemia

    Get PDF
    The bcl-x gene appears to play a critical role in regulating apoptosis in the developing and mature central nervous system (CNS) and following CNS injury. Two isoforms of Bcl-x are produced as a result of alternative pre-mRNA splicing: Bcl-x(L) (the long form) is anti-apoptotic, while Bcl-x(S) (short form) is pro-apoptotic. Despite the antagonistic activities of these two isoforms, little is known about how regulation of alternative splicing of bcl-x may mediate neural cell apoptosis. Here, we report that apoptotic stimuli (staurosporine or C2-ceramide) reciprocally altered Bcl-x splicing in neural cells, decreasing Bcl-x(L) while increasing Bcl-x(S). Specific knockdown of Bcl-x(S) attenuated apoptosis. In order to further define regulatory elements that influenced Bcl-x splicing, a Bcl-x minigene was constructed. Deletional analysis revealed several consensus sequences within intron 2 that altered splicing. We found that the splicing factor, CUG-binding-protein-1 (CUGBP1), bound to a consensus sequence close to the Bcl-x(L) 5â€Č splice site, altering the Bcl-x(L)/Bcl-x(S) ratio and influencing cell death. In vivo, neonatal hypoxia-ischemia reciprocally altered Bcl-x pre-mRNA splicing, similar to the in vitro studies. Manipulation of the splice isoforms using viral gene transfer of Bcl-x(S) shRNA into the hippocampus of rats prior to neonatal hypoxia-ischemia decreased vulnerability to injury. Moreover, alterations in nuclear CUGBP1 preceded Bcl-x splicing changes. These results suggest that alternative pre-mRNA splicing may be an important regulatory mechanism for cell death after acute neurological injury, and may potentially provide novel targets for intervention
    • 

    corecore