147 research outputs found

    Gpr126/Adgrg6 has Schwann cell autonomous and nonautonomous functions in peripheral nerve injury and repair

    Get PDF
    Schwann cells (SCs) are essential for proper peripheral nerve development and repair, although the mechanisms regulating these processes are incompletely understood. We previously showed that the adhesion G protein-coupled receptor Gpr126/Adgrg6 is essential for SC development and myelination. Interestingly, the expression of Gpr126 is maintained in adult SCs, suggestive of a function in the mature nerve. We therefore investigated the role of Gpr126 in nerve repair by studying an inducible SC-specific Gpr126 knock-out mouse model. Here, we show that remyelination is severely delayed after nerve-crush injury. Moreover, we also observe noncell-autonomous defects in macrophage recruitment and axon regeneration in injured nerves following loss of Gpr126 in SCs. This work demonstrates that Gpr126 has critical SC-autonomous and SC-nonautonomous functions in remyelination and peripheral nerve repair. SIGNIFICANCE STATEMENT Lack of robust remyelination represents one of the major barriers to recovery of neurological functions in disease or following injury in many disorders of the nervous system. Here we show that the adhesion class G protein-coupled receptor (GPCR) Gpr126/Adgrg6 is required for remyelination, macrophage recruitment, and axon regeneration following nerve injury. At least 30% of all approved drugs target GPCRs; thus, Gpr126 represents an attractive potential target to stimulate repair in myelin disease or following nerve injury

    Do maternal health problems influence child's worrying status? Evidence from the British Cohort Study

    Get PDF
    Conventional methods apply symmetric prior distributions such as a normal distribution or a Laplace distribution for regression coefficients, which may be suitable for median regression and exhibit no robustness to outliers. This work develops a quantile regression on linear panel data model without heterogeneity from a Bayesian point of view, i.e. upon a location-scale mixture representation of the asymmetric Laplace error distribution, and provides how the posterior distribution is summarized using Markov chain Monte Carlo methods. Applying this approach to the 1970 British Cohort Study (BCS) data, it finds that a different maternal health problem has different influence on child's worrying status at different quantiles. In addition, applying stochastic search variable selection for maternal health problems to the 1970 BCS data, it finds that maternal nervous breakdown, among the 25 maternal health problems, contributes most to influence the child's worrying status

    Disease-Associated Mutations Prevent GPR56-Collagen III Interaction

    Get PDF
    GPR56 is a member of the adhesion G protein-coupled receptor (GPCR) family. Mutations in GPR56 cause a devastating human brain malformation called bilateral frontoparietal polymicrogyria (BFPP). Using the N-terminal fragment of GPR56 (GPR56N) as a probe, we have recently demonstrated that collagen III is the ligand of GPR56 in the developing brain. In this report, we discover a new functional domain in GPR56N, the ligand binding domain. This domain contains four disease-associated mutations and two N-glycosylation sites. Our study reveals that although glycosylation is not required for ligand binding, each of the four disease-associated mutations completely abolish the ligand binding ability of GPR56. Our data indicates that these four single missense mutations cause BFPP mostly by abolishing the ability of GPR56 to bind to its ligand, collagen III, in addition to affecting GPR56 protein surface expression as previously shown

    GPR56/ADGRG1 regulates development and maintenance of peripheral myelin

    Get PDF
    Myelin is a multilamellar sheath generated by specialized glia called Schwann cells (SCs) in the peripheral nervous system (PNS), which serves to protect and insulate axons for rapid neuronal signaling. In zebrafish and rodent models, we identify GPR56/ADGRG1 as a conserved regulator of PNS development and health. We demonstrate that, during SC development, GPR56-dependent RhoA signaling promotes timely radial sorting of axons. In the mature PNS, GPR56 is localized to distinct SC cytoplasmic domains, is required to establish proper myelin thickness, and facilitates organization of the myelin sheath. Furthermore, we define plectin-a scaffolding protein previously linked to SC domain organization, myelin maintenance, and a series of disorders termed "plectinopathies"-as a novel interacting partner of GPR56. Finally, we show that Gpr56 mutants develop progressive neuropathy-like symptoms, suggesting an underlying mechanism for peripheral defects in some human patients with GPR56 mutations. In sum, we define Gpr56 as a new regulator in the development and maintenance of peripheral myelin

    Substrate Trapping Proteomics Reveals Targets of the βTrCP2/FBXW11 Ubiquitin Ligase

    Get PDF
    Defining the full complement of substrates for each ubiquitin ligase remains an important challenge. Improvements in mass spectrometry instrumentation and computation and in protein biochemistry methods have resulted in several new methods for ubiquitin ligase substrate identification. Here we used the parallel adapter capture (PAC) proteomics approach to study βTrCP2/FBXW11, a substrate adaptor for the SKP1–CUL1–F-box (SCF) E3 ubiquitin ligase complex. The processivity of the ubiquitylation reaction necessitates transient physical interactions between FBXW11 and its substrates, thus making biochemical purification of FBXW11-bound substrates difficult. Using the PAC-based approach, we inhibited the proteasome to “trap” ubiquitylated substrates on the SCFFBXW11E3 complex. Comparative mass spectrometry analysis of immunopurified FBXW11 protein complexes before and after proteasome inhibition revealed 21 known and 23 putatively novel substrates. In focused studies, we found that SCFFBXW11bound, polyubiquitylated, and destabilized RAPGEF2, a guanine nucleotide exchange factor that activates the small GTPase RAP1. High RAPGEF2 protein levels promoted cell-cell fusion and, consequently, multinucleation. Surprisingly, this occurred independently of the guanine nucleotide exchange factor (GEF) catalytic activity and of the presence of RAP1. Our data establish new functions for RAPGEF2 that may contribute to aneuploidy in cancer. More broadly, this report supports the continued use of substrate trapping proteomics to comprehensively define targets for E3 ubiquitin ligases. All proteomic data are available via ProteomeXchange with identifier PXD001062

    The clinical overlap between functional dyspepsia and irritable bowel syndrome based on Rome III criteria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epidemiological studies suggest considerable overlap between functional dyspepsia (FD) and irritable bowel syndrome (IBS). To date, no surveys have been performed to investigate the clinical overlap between these two disorders using Rome III criteria. Our aim was to investigate the prevalence and risk factors for the overlap of FD and IBS based on Rome III criteria in a large clinical sample.</p> <p>Methods</p> <p>Consecutive patients at the general gastroenterology outpatient clinic were requested to complete a self-report questionnaire. FD and IBS were defined by Rome III criteria.</p> <p>Results</p> <p>Questionnaires were returned by 3014 patients (52.8% female, 89% response rate). FD-IBS overlap was observed in 5.0% of the patients, while 15.2% and 10.9% of the patients were classified as FD alone and IBS alone, respectively. Compared with non-IBS patients, the odds ratio of having FD among IBS patients was 2.09 (95% CI: 1.68–2.59). Patients with FD-IBS overlap had higher severity scores for the postprandial fullness symptom (2.35 ± 1.49 vs. 1.72 ± 1.59, P < 0.001) and overall FD symptom (6.65 ± 2.88 vs. 5.82 ± 2.76, P = 0.002) than those with FD alone. The only independent risk factor for FD-IBS overlap vs. FD alone was the presence of postprandial fullness symptom (OR 2.67, 95% CI: 1.34–5.31).</p> <p>Conclusion</p> <p>Clinical overlap of FD and IBS according to Rome III criteria is very common. One risk factor for FD-IBS overlap is the presence of postprandial fullness symptom. This study provides clues for future pathophysiological studies of FD and IBS.</p

    Missing value imputation for microarray gene expression data using histone acetylation information

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is an important pre-processing step to accurately estimate missing values in microarray data, because complete datasets are required in numerous expression profile analysis in bioinformatics. Although several methods have been suggested, their performances are not satisfactory for datasets with high missing percentages.</p> <p>Results</p> <p>The paper explores the feasibility of doing missing value imputation with the help of gene regulatory mechanism. An imputation framework called histone acetylation information aided imputation method (HAIimpute method) is presented. It incorporates the histone acetylation information into the conventional KNN(<it>k</it>-nearest neighbor) and LLS(local least square) imputation algorithms for final prediction of the missing values. The experimental results indicated that the use of acetylation information can provide significant improvements in microarray imputation accuracy. The HAIimpute methods consistently improve the widely used methods such as KNN and LLS in terms of normalized root mean squared error (NRMSE). Meanwhile, the genes imputed by HAIimpute methods are more correlated with the original complete genes in terms of Pearson correlation coefficients. Furthermore, the proposed methods also outperform GOimpute, which is one of the existing related methods that use the functional similarity as the external information.</p> <p>Conclusion</p> <p>We demonstrated that the using of histone acetylation information could greatly improve the performance of the imputation especially at high missing percentages. This idea can be generalized to various imputation methods to facilitate the performance. Moreover, with more knowledge accumulated on gene regulatory mechanism in addition to histone acetylation, the performance of our approach can be further improved and verified.</p

    Transcriptional interaction-assisted identification of dynamic nucleosome positioning

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nucleosomes regulate DNA accessibility and therefore play a central role in transcription control. Computational methods have been developed to predict static nucleosome positions from DNA sequences, but nucleosomes are dynamic in vivo.</p> <p>Results</p> <p>Motivated by our observation that transcriptional interaction is discriminative information for nucleosome occupancy, we developed a novel computational approach to identify dynamic nucleosome positions at promoters by combining transcriptional interaction and genomic sequence information. Our approach successfully identified experimentally determined nucleosome positioning dynamics available in three cellular conditions, and significantly improved the prediction accuracy which is based on sequence information alone. We then applied our approach to various cellular conditions and established a comprehensive landscape of dynamic nucleosome positioning in yeast.</p> <p>Conclusion</p> <p>Analysis of this landscape revealed that the majority of nucleosome positions are maintained during most conditions. However, nucleosome occupancy at most promoters fluctuates with the corresponding gene expression level and is reduced specifically at the phase of peak expression. Further investigation into properties of nucleosome occupancy identified two gene groups associated with distinct modes of nucleosome modulation. Our results suggest that both the intrinsic sequence and regulatory proteins modulate nucleosomes in an altered manner.</p

    Gene Expression Divergence is Coupled to Evolution of DNA Structure in Coding Regions

    Get PDF
    Sequence changes in coding region and regulatory region of the gene itself (cis) determine most of gene expression divergence between closely related species. But gene expression divergence between yeast species is not correlated with evolution of primary nucleotide sequence. This indicates that other factors in cis direct gene expression divergence. Here, we studied the contribution of DNA three-dimensional structural evolution as cis to gene expression divergence. We found that the evolution of DNA structure in coding regions and gene expression divergence are correlated in yeast. Similar result was also observed between Drosophila species. DNA structure is associated with the binding of chromatin remodelers and histone modifiers to DNA sequences in coding regions, which influence RNA polymerase II occupancy that controls gene expression level. We also found that genes with similar DNA structures are involved in the same biological process and function. These results reveal the previously unappreciated roles of DNA structure as cis-effects in gene expression

    Differential Gene Expression and Adherence of Escherichia coli O157:H7 In Vitro and in Ligated Pig Intestines

    Get PDF
    BACKGROUND: Escherichia coli O157:H7 strain 86-24 grown in MacConkey broth (MB) shows almost no adherence to cultured epithelial cells but adheres well in pig ligated intestines. This study investigated the mechanisms associated with the difference between in-vitro and in-vivo adherence of the MB culture. METHODOLOGY/PRINCIPAL FINDINGS: It was found that decreased adherence in vitro by bacteria grown in MB was mainly due to lactose, possibly implicating the involvement of carbon catabolite repression (CCR). Expression of selected virulence-related genes associated with adherence and CCR was then examined by quantitative PCR. When bacteria were grown in MB and Brain Heart Infusion with NaHCO(3) (BHIN) plus lactose, pH was reduced to 5.5-5.9 and there was a significant decrease in expression of the locus of enterocyte effacement (LEE) genes eae, tir, espD, grlA/R and ler, and an increase in cya (cAMP), and two negative regulators of the LEE, gadE and hfq. Putative virulence genes stcE, hlyA, ent and nleA were also decreased in vitro. Reversal of these changes was noted for bacteria recovered from the intestine, where transcripts for qseF and fis and putative virulence factors AidA(15), TerC and Ent/EspL2 were significantly increased, and transcripts for AIDA(48), Iha, UreC, Efa1A, Efa1B, ToxB, EhxA, StcE, NleA and NleB were expressed at high levels. CONCLUSIONS/SIGNIFICANCE: Presence of lactose resulted in decreased expression of LEE genes and the failure of EHEC O157:H7 to adhere to epithelial cells in vitro but this repression was overcome in vivo. CCR and/or acidic pH may have played a role in repression of the LEE genes. Bacterial pathogens need to integrate their nutritional metabolism with expression of virulence genes but little is known of how this is done in E. coli O157:H7. This study indicates one aspect of the subject that should be investigated further
    corecore