2,099 research outputs found

    Historical contingency in species interactions: towards niche-based predictions.

    Get PDF
    The way species affect one another in ecological communities often depends on the order of species arrival. The magnitude of such historical contingency, known as priority effects, varies across species and environments, but this variation has proven difficult to predict, presenting a major challenge in understanding species interactions and consequences for community structure and function. Here, we argue that improved predictions can be achieved by decomposing species' niches into three components: overlap, impact and requirement. Based on classic theories of community assembly, three hypotheses that emphasise related, but distinct influences of the niche components are proposed: priority effects are stronger among species with higher resource use overlap; species that impact the environment to a greater extent exert stronger priority effects; and species whose growth rate is more sensitive to changes in the environment experience stronger priority effects. Using nectar-inhabiting microorganisms as a model system, we present evidence that these hypotheses complement the conventional hypothesis that focuses on the role of environmental harshness, and show that niches can be twice as predictive when separated into components. Taken together, our hypotheses provide a basis for developing a general framework within which the magnitude of historical contingency in species interactions can be predicted

    The Origin, Succession, and Predicted Metabolism of Bacterial Communities Associated with Leaf Decomposition.

    Get PDF
    Intraspecific variation in plant nutrient and defensive traits can regulate ecosystem-level processes, such as decomposition and transformation of plant carbon and nutrients. Understanding the regulatory mechanisms of ecosystem functions at local scales may facilitate predictions of the resistance and resilience of these functions to change. We evaluated how riverine bacterial community assembly and predicted gene content corresponded to decomposition rates of green leaf inputs from red alder trees into rivers of Washington State, USA. Previously, we documented accelerated decomposition rates for leaves originating from trees growing adjacent to the site of decomposition versus more distant locales, suggesting that microbes have a "home-field advantage" in decomposing local leaves. Here, we identified repeatable stages of bacterial succession, each defined by dominant taxa with predicted gene content associated with metabolic pathways relevant to the leaf characteristics and course of decomposition. "Home" leaves contained bacterial communities with distinct functional capacities to degrade aromatic compounds. Given known spatial variation of alder aromatics, this finding helps explain locally accelerated decomposition. Bacterial decomposer communities adjust to intraspecific variation in leaves at spatial scales of less than a kilometer, providing a mechanism for rapid response to changes in resources such as range shifts among plant genotypes. Such rapid responses among bacterial communities in turn may maintain high rates of carbon and nutrient cycling through aquatic ecosystems.IMPORTANCE Community ecologists have traditionally treated individuals within a species as uniform, with individual-level biodiversity rarely considered as a regulator of community and ecosystem function. In our study system, we have documented clear evidence of within-species variation causing local ecosystem adaptation to fluxes across ecosystem boundaries. In this striking pattern of a "home-field advantage," leaves from individual trees tend to decompose most rapidly when immediately adjacent to their parent tree. Here, we merge community ecology experiments with microbiome approaches to describe how bacterial communities adjust to within-species variation in leaves over spatial scales of less than a kilometer. The results show that bacterial community compositional changes facilitate rapid ecosystem responses to environmental change, effectively maintaining high rates of carbon and nutrient cycling through ecosystems

    Enhanced thermal stability of the toric code through coupling to a bosonic bath

    Full text link
    We propose and study a model of a quantum memory that features self-correcting properties and a lifetime growing arbitrarily with system size at non-zero temperature. This is achieved by locally coupling a 2D L x L toric code to a 3D bath of bosons hopping on a cubic lattice. When the stabilizer operators of the toric code are coupled to the displacement operator of the bosons, we solve the model exactly via a polaron transformation and show that the energy penalty to create anyons grows linearly with L. When the stabilizer operators of the toric code are coupled to the bosonic density operator, we use perturbation theory to show that the energy penalty for anyons scales with ln(L). For a given error model, these energy penalties lead to a lifetime of the stored quantum information growing respectively exponentially and polynomially with L. Furthermore, we show how to choose an appropriate coupling scheme in order to hinder the hopping of anyons (and not only their creation) with energy barriers that are of the same order as the anyon creation gaps. We argue that a toric code coupled to a 3D Heisenberg ferromagnet realizes our model in its low-energy sector. Finally, we discuss the delicate issue of the stability of topological order in the presence of perturbations. While we do not derive a rigorous proof of topological order, we present heuristic arguments suggesting that topological order remains intact when perturbative operators acting on the toric code spins are coupled to the bosonic environment.Comment: This manuscript has some overlap with arXiv:1209.5289. However, a different model is the focus of the current work. Since this model is exactly solvable, it allows a clearer demonstration of the principle behind our quantum memory proposal. v2: minor changes and additional referenc

    Effective quantum memory Hamiltonian from local two-body interactions

    Full text link
    In [Phys. Rev. A 88, 062313 (2013)] we proposed and studied a model for a self-correcting quantum memory in which the energetic cost for introducing a defect in the memory grows without bounds as a function of system size. This positive behavior is due to attractive long-range interactions mediated by a bosonic field to which the memory is coupled. The crucial ingredients for the implementation of such a memory are the physical realization of the bosonic field as well as local five-body interactions between the stabilizer operators of the memory and the bosonic field. Here, we show that both of these ingredients appear in a low-energy effective theory of a Hamiltonian that involves only two-body interactions between neighboring spins. In particular, we consider the low-energy, long-wavelength excitations of an ordered Heisenberg ferromagnet (magnons) as a realization of the bosonic field. Furthermore, we present perturbative gadgets for generating the required five-spin operators. Our Hamiltonian involving only local two-body interactions is thus expected to exhibit self-correcting properties as long as the noise affecting it is in the regime where the effective low-energy description remains valid.Comment: 14 pages, 3 figure

    Potential influence of phytochemicals from beetroot juice on postprandial glycaemia

    Get PDF

    Integrating crime prevention into urban design and planning

    Get PDF
    Purpose: This paper aims to understand the delivery of Crime Prevention Through Environmental Design (CPTED) across Europe—from European-wide procedures, through national schemes to effective local strategies. Methodology: The findings come from a review of published literature and reports, case studies and site visits conducted primarily during COST Action TU1203 (2013–16). Findings: Innovative approaches and methods to integrate crime prevention into urban design, planning and management have been generated by multi-agency partnerships and collaborations at European, national and city levels. Methods and procedures developed by the European Committee for Standardization (CEN) Working Group on “Crime Prevention through Urban Planning and Building Design” are pioneering. However, findings show that implementation is best achieved at a local level using methods and procedures tailored to the specific context. Practical and research implications: In-depth research is required to appreciate subtle differences between local approaches and conceptual models developed to better understand approaches and methods. In addition, practitioners and academics working to prevent crime benefit from participation in focused, multi-agency collaborations that, importantly, facilitate visits to urban developments, discussions with local stakeholders responsible for delivery ‘on the ground’ and structured and sustained exploration of innovations and challenges. Originality / value: The authors hope that this paper will contribute to developing a new direction for CPTED practice and research that builds on significant progress in creating safer environments over previous decades
    • 

    corecore