7,606 research outputs found

    Air data position-error calibration using state reconstruction techniques

    Get PDF
    During the highly maneuverable aircraft technology (HiMAT) flight test program recently completed at NASA Ames Research Center's Dryden Flight Research Facility, numerous problems were experienced in airspeed calibration. This necessitated the use of state reconstruction techniques to arrive at a position-error calibration. For the HiMAT aircraft, most of the calibration effort was expended on flights in which the air data pressure transducers were not performing accurately. Following discovery of this problem, the air data transducers of both aircraft were wrapped in heater blankets to correct the problem. Additional calibration flights were performed, and from the resulting data a satisfactory position-error calibration was obtained. This calibration and data obtained before installation of the heater blankets were used to develop an alternate calibration method. The alternate approach took advantage of high-quality inertial data that was readily available. A linearized Kalman filter (LKF) was used to reconstruct the aircraft's wind-relative trajectory; the trajectory was then used to separate transducer measurement errors from the aircraft position error. This calibration method is accurate and inexpensive. The LKF technique has an inherent advantage of requiring that no flight maneuvers be specially designed for airspeed calibrations. It is of particular use when the measurements of the wind-relative quantities are suspected to have transducer-related errors

    Flight and wind-tunnel comparisons of the inlet-airframe interaction of the F-15 airplane

    Get PDF
    The design of inlets and nozzles and their interactions with the airplane which may account for a large percentage of the total drag of modern high performance aircraft is discussed. The inlet/airframe interactions program and the flight tests conducted is described. Inlet drag and lift data from a 7.5% wind-tunnel model are compared with data from an F-15 airplane with instrumentation to match the model. Pressure coefficient variations with variable cowl angles, capture ratios, examples of flow interactions and angles of attack are for Mach numbers of 0.6, 0.9, 1.2, and 1.5 are presented

    The Infrared Massive Stellar Content of M83

    Full text link
    We present an analysis of archival Spitzer images and new ground-based and Hubble Space Telescope (HST) near-infrared (IR) and optical images of the field of M83 with the goal of identifying rare, dusty, evolved massive stars. We present point source catalogs consisting of 3778 objects from SpitzerSpitzer Infrared Array Camera (IRAC) Band 1 (3.6 μ\mum) and Band 2 (4.5 μ\mum), and 975 objects identified in Magellan 6.5m FourStar near-IR JJ and KsK_{\rm s} images. A combined catalog of coordinate matched near- and mid-IR point sources yields 221 objects in the field of M83. Using this photometry we identify 185 massive evolved stellar candidates based on their location in color-magnitude and color-color diagrams. We estimate the background contamination to our stellar candidate lists and further classify candidates based on their appearance in HSTHST Wide Field Camera 3 (WFC3) observations of M83. We find 49 strong candidates for massive stars which are very promising objects for spectroscopic follow-up. Based on their location in a BVB-V versus VIV-I diagram, we expect at least 24, or roughly 50%, to be confirmed as red supergiants.Comment: 32 pages, 23 figures, accepted for publication in A&

    What Fraction of the Young Clusters in the Antennae Galaxies are "Missing"?

    Get PDF
    A reexamination of the correspondence between 6 cm radio continuum sources and young star clusters in the Antennae galaxies indicates that 85 % of the strong thermal sources have optical counterparts, once the optical image is shifted 1.2 arcsec to the southwest. A sample of 37 radio-optical matches are studied in detail showing correlations between radio properties and a variety of optical characteristics. There is a strong correlation between the radio flux and the intrinsic optical brightness. In particular, the brightest radio source is also the intrinsically brightest optical cluster (WS80). It is also the most extincted cluster in the sample, the strongest CO source and the strongest 15 micron source . Furthermore, the brightest ten radio sources are all amongst the youngest clusters with ages in the range 0 - 4 Myr and extinctions from A_V = 0.5 to 7.6 mag (with a median value of 2.6 mag). Only a few of the very red clusters originally discovered by Whitmore & Schweizer are radio sources, contrary to earlier suggestions. Finally, a new hybrid method of determining cluster ages has been developed using both UBVI colors and H_alpha equivalent widths to break the age-reddening degeneracy.Comment: 51 pages, 13 postscript figures, LaTex. To appear in the Astronomical Journal, 124, 2002, Septembe

    Protection of Works of Art From Atmospheric Ozone

    Get PDF
    Assesses the colorfastness of organic colorants and watercolor pigments tested in atmospheric ozone. A summary of a full report of the Environmental Quality Laboratory, California Institute of Technology, Pasadena

    The Specific Globular Cluster Frequencies of Dwarf Elliptical Galaxies from the Hubble Space Telescope

    Full text link
    The specific globular cluster frequencies (S_N) for 24 dwarf elliptical (dE) galaxies in the Virgo and Fornax Clusters and the Leo Group imaged with the Hubble Space Telescope are presented. Combining all available data, we find that for nucleated dEs --- which are spatially distributed like giant ellipticals in galaxy clusters --- S_N(dE,N)=6.5 +- 1.2 and S_N increases with M_V, while for non-nucleated dEs --- which are distributed like late-type galaxies --- S_N(dE,noN)=3.1 +- 0.5 and there is little or no trend with M_V. The S_N values for dE galaxies are thus on average significantly higher than those for late-type galaxies, which have S_N < 1. This suggests that dE galaxies are more akin to giant Es than to late-type galaxies. If there are dormant or stripped irregulars hiding among the dE population, they are likely to be among the non-nucleated dEs. Furthermore, the similarities in the properties of the globular clusters and in the spatial distributions of dE,Ns and giant Es suggest that neither galaxy mass or galaxy metallicity is responsible for high values of S_N. Instead, most metal-poor GCs may have formed in dwarf-sized fragments that merged into larger galaxies.Comment: 12 pages (uses aaspp4.sty), 2 figures, 1 table, to appear in the Astrophysical Journa

    Young and intermediate-age massive star clusters

    Full text link
    An overview of our current understanding of the formation and evolution of star clusters is given, with main emphasis on high-mass clusters. Clusters form deeply embedded within dense clouds of molecular gas. Left-over gas is cleared within a few million years and, depending on the efficiency of star formation, the clusters may disperse almost immediately or remain gravitationally bound. Current evidence suggests that a few percent of star formation occurs in clusters that remain bound, although it is not yet clear if this fraction is truly universal. Internal two-body relaxation and external shocks will lead to further, gradual dissolution on timescales of up to a few hundred million years for low-mass open clusters in the Milky Way, while the most massive clusters (> 10^5 Msun) have lifetimes comparable to or exceeding the age of the Universe. The low-mass end of the initial cluster mass function is well approximated by a power-law distribution, dN/dM ~ M^{-2}, but there is mounting evidence that quiescent spiral discs form relatively few clusters with masses M > 2 x 10^5 Msun. In starburst galaxies and old globular cluster systems, this limit appears to be higher, at least several x 10^6 Msun. The difference is likely related to the higher gas densities and pressures in starburst galaxies, which allow denser, more massive giant molecular clouds to form. Low-mass clusters may thus trace star formation quite universally, while the more long-lived, massive clusters appear to form preferentially in the context of violent star formation.Comment: 21 pages, 3 figures. To appear as invited review article in a special issue of the Phil. Trans. Royal Soc. A: Ch. 9 "Star clusters as tracers of galactic star-formation histories" (ed. R. de Grijs). Fully peer reviewed. PDFLaTeX, requires rspublic.cls style fil

    Flight and wind-tunnel calibrations of a flush airdata sensor at high angles of attack and sideslip and at supersonic Mach numbers

    Get PDF
    A nonintrusive airdata-sensing system was calibrated in flight and wind-tunnel experiments to an angle of attack of 70 deg and to angles of sideslip of +/- 15 deg. Flight-calibration data have also been obtained to Mach 1.2. The sensor, known as the flush airdata sensor, was installed on the nosecap of an F-18 aircraft for flight tests and on a full-scale F-18 forebody for wind-tunnel tests. Flight tests occurred at the NASA Dryden Flight Research Facility, Edwards, California, using the F-18 High Alpha Research Vehicle. Wind-tunnel tests were conducted in the 30- by 60-ft wind tunnel at the NASA LaRC, Hampton, Virginia. The sensor consisted of 23 flush-mounted pressure ports arranged in concentric circles and located within 1.75 in. of the tip of the nosecap. An overdetermined mathematical model was used to relate the pressure measurements to the local airdata quantities. The mathematical model was based on potential flow over a sphere and was empirically adjusted based on flight and wind-tunnel data. For quasi-steady maneuvering, the mathematical model worked well throughout the subsonic, transonic, and low supersonic flight regimes. The model also worked well throughout the angles-of-attack and -sideslip regions studied

    High-angle-of-attack pneumatic lag and upwash corrections for a hemispherical flow direction sensor

    Get PDF
    As part of the NASA F-14 high angle of attack flight test program, a nose mounted hemispherical flow direction sensor was calibrated against a fuselage mounted movable vane flow angle sensor. Significant discrepancies were found to exist in the angle of attack measurements. A two fold approach taken to resolve these discrepancies during subsonic flight is described. First, the sensing integrity of the isolated hemispherical sensor is established by wind tunnel data extending to an angle of attack of 60 deg. Second, two probable causes for the discrepancies, pneumatic lag and upwash, are examined. Methods of identifying and compensating for lag and upwash are presented. The wind tunnel data verify that the isolated hemispherical sensor is sufficiently accurate for static conditions with angles of attack up to 60 deg and angles of sideslip up to 30 deg. Analysis of flight data for two high angle of attack maneuvers establishes that pneumatic lag and upwash are highly correlated with the discrepancies between the hemispherical and vane type sensor measurements
    corecore