2,813 research outputs found
Generalized Smoluchowski equation with correlation between clusters
In this paper we compute new reaction rates of the Smoluchowski equation
which takes into account correlations. The new rate K = KMF + KC is the sum of
two terms. The first term is the known Smoluchowski rate with the mean-field
approximation. The second takes into account a correlation between clusters.
For this purpose we introduce the average path of a cluster. We relate the
length of this path to the reaction rate of the Smoluchowski equation. We solve
the implicit dependence between the average path and the density of clusters.
We show that this correlation length is the same for all clusters. Our result
depends strongly on the spatial dimension d. The mean-field term KMFi,j = (Di +
Dj)(rj + ri)d-2, which vanishes for d = 1 and is valid up to logarithmic
correction for d = 2, is the usual rate found with the Smoluchowski model
without correlation (where ri is the radius and Di is the diffusion constant of
the cluster). We compute a new rate: the correlation rate K_{i,j}^{C}
(D_i+D_j)(r_j+r_i)^{d-1}M{\big(\frac{d-1}{d_f}}\big) is valid for d \leq
1(where M(\alpha) = \sum+\infty i=1i\alphaNi is the moment of the density of
clusters and df is the fractal dimension of the cluster). The result is valid
for a large class of diffusion processes and mass radius relations. This
approach confirms some analytical solutions in d 1 found with other methods. We
also show Monte Carlo simulations which illustrate some exact new solvable
models
New paradoxical games based on Brownian ratchets
Based on Brownian ratchets, a counter-intuitive phenomenon has recently
emerged -- namely, that two losing games can yield, when combined, a
paradoxical tendency to win. A restriction of this phenomenon is that the rules
depend on the current capital of the player. Here we present new games where
all the rules depend only on the history of the game and not on the capital.
This new history-dependent structure significantly increases the parameter
space for which the effect operates.Comment: 4 pages, 3 eps figures, revte
Unifying thermodynamic and kinetic descriptions of single-molecule processes: RNA unfolding under tension
We use mesoscopic non-equilibrium thermodynamics theory to describe RNA
unfolding under tension. The theory introduces reaction coordinates,
characterizing a continuum of states for each bond in the molecule. The
unfolding considered is so slow that one can assume local equilibrium in the
space of the reaction coordinates. In the quasi-stationary limit of high
sequential barriers, our theory yields the master equation of a recently
proposed sequential-step model. Non-linear switching kinetics is found between
open and closed states. Our theory unifies the thermodynamic and kinetic
descriptions and offers a systematic procedure to characterize the dynamics of
the unfolding processComment: 13 pages, 3 figure
Results from the Milagrito experiment
The Milagro water Cherenkov detector near Los Alamos, New Mexico is the first air shower detector capable of continuously monitoring the sky at energies between 500 GeV and 20 TeV. Preliminary results of the Milagro experiment are presented. A predecessor of the Milagro detector, Milagrito, was operational from February 1997 to May 1998. Milagrito consisted of 228 8″ photomultiplier tubes (PMTs) arranged in a grid with a 2.8 meter spacing and submerged in 1–2 meters of water. During its operation, Milagrito collected in excess of 9 billion events with a median energy of about 3 TeV. The detector’s sensitivity extends below 1 TeV for showers from near zenith. The results of an all sky search for the Milagrito data for both transient and DC sources will be presented, including the Crab Nebula and active galaxies Markarian 501 and 421, which are known sources of TeV gamma-rays. Also presented will be a study of the TeV emission from gamma ray bursts (GRBs) in Milagrito’s field of view detected by the BATSE experiment on the Compton Gamma-Ray Observatory
Milagro: A TeV gamma-ray monitor of the Northern Hemisphere Sky
A new type of very high energy (\u3e a few 100 GeV) gamma-ray observatory, Milagro, has been built with a large field of view of \u3e1 steradian and nearly 24 hours/day operation. Milagrito, a prototype for Milagro, was operated from February 1997 to May 1998. During the summer of 1998, Milagrito was dismantled and Milagro was built. Both detectors use a 80 m×60 m×8 mpond of water in which a 3 m×3 m grid of photomultiplier tubes detects the Cherenkov light produced in the water by the relativistic particles in extensive air showers. Milagrito was smaller and had only one layer of photomultipliers, but allowed the technique to be tested. Milagrito observations of the Moon’s shadow and Mrk 501 are consistent with the Monte Carlo prediction of the telescopes parameters, such as effective area and angular resolution. Milagro is larger and consists of two layers of photomultiplier tubes. The bottom layer detects penetrating particles that are used to reject the background of cosmic-ray initiated showers
First results of a study of TeV emission from GRBs in Milagrito
Milagrito, a detector sensitive to γ-rays at TeV energies, monitored the northern sky during the period February 1997 through May 1998. With a large field of view and high duty cycle, this instrument was used to perform a search for TeV counterparts to γ-ray bursts. Within the Milagrito field of view 54 γ-ray bursts at keV energies were observed by the Burst And Transient Satellite Experiment (BATSE) aboard the Compton Gamma-Ray Observatory. This paper describes the results of a preliminary analysis to search for TeV emission correlated with BATSE detected bursts. Milagrito detected an excess of events coincident both spatially and temporally with GRB 970417a, with chance probability 2.8×10−5 within the BATSE error radius. No other significant correlations were detected. Since 54 bursts were examined the chance probability of observing an excess with this significance in any of these bursts is 1.5×10−3. The statistical aspects and physical implications of this result are discussed
Detection of 6 November 1997 ground level event by Milagrito
Solar Energetic Particles (SEPs) with energies exceeding 10 GeV associated with the 6 November 1997 solar flare/CME (coronal mass ejection) have been detected with Milagrito, a prototype of the Milagro Gamma Ray Observatory. While SEP acceleration beyond 1 GeV is well established, few data exist for protons or ions beyond 10 GeV. The Milagro observatory, a ground based water Cherenkov detector designed for observing very high energy gamma ray sources, can also be used to study the Sun. Milagrito, which operated for approximately one year in 1997/98, was sensitive to solar proton and neutron fluxes above ∼4 GeV. In its scaler mode, Milagrito registered a rate increase coincident with the 6 November 1997 ground level event observed by Climax and other neutron monitors. A preliminary analysis suggests the presence of \u3e10 GeV particles
Milagro: A TeV observatory for gamma-ray bursts
Observation of prompt TeV γ-rays from GRBs requires a new type of detector to overcome the low duty factor and small field of view of current TeV observatories. Milagro is such a new type of very high energy (\u3e a few 100 GeV) gamma-ray observatory, which has a large field of view of \u3e1 steradian and 24 hours/day operation. Milagrito, a prototype for Milagro, was operated from February 1997 to May 1998. During the summer of 1998, Milagrito was dismantled and Milagro was built. Both detectors use a 80 m×60 m×8 m pond of water in which a 3 m×3 m grid of photomultiplier tubes detects the Cherenkov light produced in the water by the relativistic particles in extensive air showers. Milagrito was smaller and had only one layer of photomultipliers, but allowed the technique to be tested. Milagrito observations of the Moon’s shadow and Mrk 501 are consistent with the Monte Carlo prediction of the telescope’s parameters, such as effective area and angular resolution. Milagro will have improved flux sensitivity over Milagrito due to larger effective area, better angular resolution and cosmic-ray background rejection
First Results of a Study of TeV Emission from GRBs in Milagrito
Milagrito, a detector sensitive to gamma-rays at TeV energies, monitored the
northern sky during the period February 1997 through May 1998. With a large
field of view and high duty cycle, this instrument was used to perform a search
for TeV counterparts to gamma-ray bursts. Within the Milagrito field of view 54
gamma-ray bursts at keV energies were observed by the Burst And Transient
Satellite Experiment (BATSE) aboard the Compton Gamma-Ray Observatory. This
paper describes the results of a preliminary analysis to search for TeV
emission correlated with BATSE detected bursts. Milagrito detected an excess of
events coincident both spatially and temporally with GRB 970417a, with chance
probability within the BATSE error radius. No other
significant correlations were detected. Since 54 bursts were examined the
chance probability of observing an excess with this significance in any of
these bursts is . The statistical aspects and physical
implications of this result are discussed.Comment: 6 pages, 5 figures, to appear in "GeV-TeV Astrophysics: Toward a
Major Atmospheric Cherenkov Telescope VI," Snowbird, Utah (August, 1999
Milagrito Detection of TeV Emission from Mrk 501
The Milagro water Cherenkov detector near Los Alamos, New Mexico, has been
operated as a sky monitor at energies of a few TeV between February 1997 and
April 1998. Serving as a test run for the full Milagro detector, Milagrito has
taken data during the strong and long-lasting 1997 flare of Mrk 501. We present
results from the analysis of Mrk 501 and compare the excess and background
rates with expectations from the detector simulations.Comment: 4 pages, submitted to XXVI International Cosmic Ray Conference, Salt
Lake Cit
- …
