4,017 research outputs found

    Towards experimental entanglement connection with atomic ensembles in the single excitation regime

    Get PDF
    We present a protocol for performing entanglement connection between pairs of atomic ensembles in the single excitation regime. Two pairs are prepared in an asynchronous fashion and then connected via a Bell measurement. The resulting state of the two remaining ensembles is mapped to photonic modes and a reduced density matrix is then reconstructed. Our observations confirm for the first time the creation of coherence between atomic systems that never interacted, a first step towards entanglement connection, a critical requirement for quantum networking and long distance quantum communications

    Stable and Unstable Regimes of Mass Accretion onto RW Aur A

    Full text link
    We present monitoring observations of the active T Tauri star RW Aur, from 2010 October to 2015 January, using optical high-resolution (R>10000) spectroscopy with CFHT-ESPaDOnS. Optical photometry in the literature shows bright, stable fluxes over most of this period, with lower fluxes (by 2-3 mag.) in 2010 and 2014. In the bright period our spectra show clear photospheric absorption, complicated variation in the Ca II 8542 A emission}profile shapes, and a large variation in redshifted absorption in the O I 7772 and 8446 A and He I 5876 A lines, suggesting unstable mass accretion during this period. In contrast, these line profiles are relatively uniform during the faint periods, suggesting stable mass accretion. During the faint periods the photospheric absorption lines are absent or marginal, and the averaged Li I profile shows redshifted absorption due to an inflow. We discuss (1) occultation by circumstellar material or a companion and (2) changes in the activity of mass accretion to explain the above results, together with near-infrared and X-ray observations from 2011-2015. Neither scenario can simply explain all the observed trends, and more theoretical work is needed to further investigate their feasibilities.Comment: 23 pages, 11 figures, 4 tables, accepted by Astrophysical Journal; some typos corrected on 4/18/201

    Quasi-Fermi Distribution and Resonant Tunneling of Quasiparticles with Fractional Charges

    Full text link
    We study the resonant tunneling of quasiparticles through an impurity between the edges of a Fractional Quantum Hall sample. We show that the one-particle momentum distribution of fractionally charged edge quasiparticles has a quasi-Fermi character. The density of states near the quasi-Fermi energy at zero temperature is singular due to the statistical interaction of quasiparticles. Another effect of this interaction is a new selection rule for the resonant tunneling of fractionally charged quasiparticles: the resonance is suppressed unless an integer number of {\em electrons} occupies the impurity. It allows a new explanation of the scaling behavior observed in the mesoscopic fluctuations of the conductivity in the FQHE.Comment: 7 pages, REVTeX 3.0, Preprint SU-ITP-93-1

    Hydrodynamic modes in a trapped Bose gas above the Bose-Einstein transition

    Full text link
    We discuss the collective modes of a trapped Bose gas in the hydrodynamic regime where atomic collisions ensure local thermal equilibrium for the distribution function. Starting from the conservation laws, in the linearized limit we derive a closed equation for the velocity fluctuations in a trapped Bose gas above the Bose-Einstein transition temperature. Explicit solutions for a parabolic trap are given. We find that the surface modes have the same dispersion relation as the one recently obtained by Stringari for the oscillations of the condensate at T=0T=0 within the Thomas-Fermi approximation. Results are also given for the monopole ``breathing'' mode as well as for the m=0m=0 excitations which result from the coupling of the monopole and quadrupole modes in an anisotropic parabolic well.Comment: 4 pages, no figure, submitted to Phys. Rev. Let

    Measuring response functions of active materials from data

    Full text link
    From flocks of birds to biomolecular assemblies, systems in which many individual components independently consume energy to perform mechanical work exhibit a wide array of striking behaviors. Methods to quantify the dynamics of these so called active systems generally aim to extract important length or time scales from experimental fields. Because such methods focus on extracting scalar values, they do not wring maximal information from experimental data. We introduce a method to overcome these limitations. We extend the framework of correlation functions by taking into account the internal headings of displacement fields. The functions we construct represent the material response to specific types of active perturbation within the system. Utilizing these response functions we query the material response of disparate active systems composed of actin filaments and myosin motors, from model fluids to living cells. We show we can extract critical length scales from the turbulent flows of an active nematic, anticipate contractility in an active gel, distinguish viscous from viscoelastic dissipation, and even differentiate modes of contractility in living cells. These examples underscore the vast utility of this method which measures response functions from experimental observations of complex active systems

    Quantized hydrodynamic model and the dynamic structure factor for a trapped Bose gas

    Full text link
    We quantize the recent hydrodynamic analysis of Stringari for the low-energy collective modes of a trapped Bose gas at T=0T=0. This is based on the time-dependent Gross-Pitaevskii equation, but omits the kinetic energy of the density fluctuations. We diagonalize the hydrodynamic Hamiltonian in terms of the normal modes associated with the amplitude and phase of the inhomogeneous Bose order parameter. These normal modes provide a convenient basis for calculating observable quantities. As applications, we calculate the depletion of the condensate at T=0T=0 as well as the inelastic light-scattering cross section S(q,ω)S({\bf q},\omega) from low-energy condensate fluctuations. The latter involves a sum over all normal modes, with a weight proportional to the square of the q{\bf q} Fourier component of the density fluctuation associated with a given mode. Finally, we show how the Thomas-Fermi hydrodynamic description can be derived starting from the coupled Bogoliubov equations.Comment: 25 pages, 4 figures, submitted to Phys. Rev.

    Decoherence in Quantum Gravity: Issues and Critiques

    Get PDF
    An increasing number of papers have appeared in recent years on decoherence in quantum gravity at the Planck energy. We discuss the meaning of decoherence in quantum gravity starting from the common notion that quantum gravity is a theory for the microscopic structures of spacetime, and invoking some generic features of quantum decoherence from the open systems viewpoint. We dwell on a range of issues bearing on this process including the relation between statistical and quantum, noise from effective field theory, the meaning of stochasticity, the origin of non-unitarity and the nature of nonlocality in this and related contexts. To expound these issues we critique on two representative theories: One claims that decoherence in quantum gravity scale leads to the violation of CPT symmetry at sub-Planckian energy which is used to explain today's particle phenomenology. The other uses this process in place with the Brownian motion model to prove that spacetime foam behaves like a thermal bath.Comment: 25 pages, proceedings of DICE06 (Piombino
    • …
    corecore