572 research outputs found
Preliminary study on metabolic regulation and control of L-valine fermentation in a newly screened L-valine producing Brevibacterium flavum strain
A L-valine hyper-producer Brevibacterium flavum XQ-6 (Leul, Ilel, AHVr, -ABhr, 2-TAhr) was obtained, which could be resistant to high concentration of -amino-butyric acid (-AB) and 2-thiazolealanaine (2- TA). The metabolic network of XQ-6 was regulated with the addition of amino acids, organic acids,vitamins, bases and other organic things. The carbon flux was directed to L-valine by manipulating the specific activity of -ketoglutarate dehydrogenase complex (KGDH). With a combinational regulation strategy, the highest L-valine concentration of 67.7 g/L was achieved
Thermoplasmatales and Methanogens: Potential Association with the Crenarchaeol Production in Chinese Soils
Crenarchaeol is a unique isoprenoid glycerol dibiphytanyl glycerol tetraether (iGDGT) lipid, which is only identified in cultures of ammonia-oxidizing Thaumarchaeota. However, the taxonomic origins of crenarchaeol have been debated recently. The archaeal populations, other than Thaumarchaeota, may have associations with the production of crenarchaeol in ecosystems characterized by non-thaumarchaeotal microorganisms. To this end, we investigated 47 surface soils from upland and wetland soils and rice fields and another three surface sediments from river banks. The goal was to examine the archaeal community compositions in comparison with patterns of iGDGTs in four fractional forms (intact polar-, core-, monoglycosidic- and diglycosidic-lipid fractions) along gradients of environments. The DistLM analysis identified that Group I.1b Thaumarchaeota were mainly responsible for changes in crenarchaeol in the overall soil samples; however, Thermoplasmatales may also contribute to it. This is further supported by the comparison of crenarchaeol between samples characterized by methanogens, Thermoplasmatales or Group I.1b Thaumarchaeota, which suggests that the former two may contribute to the crenarchaeol pool. Last, when samples containing enhanced abundance of Thermoplasmatales and methanogens were considered, crenarchaeol was observed to correlate positively with Thermoplasmatales and archaeol, respectively. Collectively, our data suggest that the crenarchaeol production is mainly derived from Thaumarchaeota and partly associated with uncultured representatives of Thermoplasmatales and archaeol-producing methanogens in soil environments that may be in favor of their growth. Our finding supports the notion that Thaumarchaeota may not be the sole source of crenarchaeol in the natural environment, which may have implication for the evolution of lipid synthesis among different types of archaea
IGF-1 Concentration at a Young Age is Associated with Feed Efficiency in Pigs
The concentration of IGF-I in blood of young pigs has previously been found to be genetically associated with feed efficiency and performance in pigs. To test these associations, data from the ISU selection line for residual feed intake (RFI) were used. Compared to controls, in the line selected for increased efficiency through reduced RFI, a correlated response in the expected downwards direction was observed for juvenile IGF-I. Genetic correlations of IGF-I were 0.63 with RFI and 0.78 with feed conversion ratio. These results confirm that juvenile IGF-I is a good physiological indicator of genetic merit for economically important efficiency traits, particularly since it is measured early in an animal’s life
Design of experiment approach for the process optimization of ultrasonic-assisted extraction of polysaccharide from mulberry leaves by response surface methodology
Mulberry is considered as food-medicine herb, with specific nutritional and medicinal values. In this study, response surface methodology (RSM) was employed to optimize the ultrasonic-assisted extraction of total polysaccharide from mulberry using Box-Behnken design (BBD). Based on single factor experiments, a three level, three variable central composite designs were carried out to establish a quadratic regression model for the extraction efficiency of total polysaccharides as a function of extraction time, extraction temperature and material-water ratio. The optimum extraction conditions were obtained as follows: extraction temperature of 70°C, material-water ratio of 1:30 (g/ml), and extraction time of 40 min. Under these conditions, the predicted total polysaccharides extraction efficiency was 3.6%, while the experimental value was 3.56%. Analysis of variance (ANOVA) was used to examine the statistical significance of the developed model. The result indicates that the established model well predicted the extraction efficiency of total polysaccharides from mulberry leaves.Key words: Mulberry leaves, total polysaccharides, extraction conditions, design of experiment
The transcriptional repressor Bcl6 controls the stability of regulatory T cells by intrinsic and extrinsic pathways
Foxp3(+) regulatory T (Treg) cells are essential to maintain immune homeostasis, yet controversy exists about the stability of this cell population. Bcl6-deficient (Bcl6(-/-) ) mice develop severe and spontaneous T helper type 2 (Th2) inflammation and Bcl6-deficient Treg cells are ineffective at controlling Th2 responses. We used a lineage tracing approach to analyse the fate of Treg cells in these mice. In the periphery of Bcl6(-/-) mice, increased numbers of Foxp3-negative 'exTreg' cells were found, particularly in the CD25(+) population. ExTreg cells from Bcl6(-/-) mice expressed increased interleukin-17 (IL-17) and extremely elevated levels of Th2 cytokines compared with wild-type exTreg cells. Although Treg cells normally express only low levels of cytokines, Treg cells from Bcl6(-/-) mice secreted higher levels of IL-4, IL-5, IL-13 and IL-17 than wild-type conventional T cells. Next, Treg-specific conditional Bcl6-deficient (Bcl6(Foxp3-/-) ) mice were analysed. Bcl6(Foxp3-/-) mice do not develop inflammatory disease, indicating a requirement for non-Treg cells for inflammation in Bcl6(-/-) mice, and have normal numbers of exTreg cells. We induced Th2-type allergic airway inflammation in Bcl6(Foxp3-/-) mice, and found that while exTreg cytokine expression was normal, Bcl6-deficient Treg cells expressed higher levels of the Th2-specific regulator Gata3 than Bcl6(+) Treg cells. Bcl6(Foxp3-/-) mice had increased numbers of Th2 cells after induction of airway inflammation and increased T cells in the bronchoalveolar lavage fluid. These data show both Treg-intrinsic and Treg-extrinsic roles for Bcl6 in controlling Treg cell stability and Th2 inflammation, and support the idea that Bcl6 expression in Treg cells is critical for controlling Th2 responses
Online dosimetric evaluation of larynx SBRT: A pilot study to assess the necessity of adaptive replanning
PURPOSE: We have initiated a multi-institutional phase I trial of 5-fraction stereotactic body radiotherapy (SBRT) for Stage III-IVa laryngeal cancer. We conducted this pilot dosimetric study to confirm potential utility of online adaptive replanning to preserve treatment quality.
METHODS: We evaluated ten cases: five patients enrolled onto the current trial and five patients enrolled onto a separate phase I SBRT trial for early-stage glottic larynx cancer. Baseline SBRT treatment plans were generated per protocol. Daily cone-beam CT (CBCT) or diagnostic CT images were acquired prior to each treatment fraction. Simulation CT images and target volumes were deformably registered to daily volumetric images, the original SBRT plan was copied to the deformed images and contours, delivered dose distributions were re-calculated on the deformed CT images. All of these were performed on a commercial treatment planning system. In-house software was developed to propagate the delivered dose distribution back to reference CT images using the deformation information exported from the treatment planning system. Dosimetric differences were evaluated via dose-volume histograms.
RESULTS: We could evaluate dose within 10 minutes in all cases. Prescribed coverage to gross tumor volume (GTV) and clinical target volume (CTV) was uniformly preserved; however, intended prescription dose coverage of planning treatment volume (PTV) was lost in 53% of daily treatments (mean: 93.9%, range: 83.9-97.9%). Maximum bystander point dose limits to arytenoids, parotids, and spinal cord remained respected in all cases, although variances in carotid artery doses were observed in a minority of cases.
CONCLUSIONS: Although GTV and CTV SBRT dose coverage is preserved with in-room three-dimensional image guidance, PTV coverage can vary significantly from intended plans and dose to critical structures may exceed tolerances. Online adaptive treatment re-planning is potentially necessary and clinically applicable to fully preserve treatment quality. Confirmatory trial accrual and analysis remains ongoing
TH9 cells are required for tissue mast cell accumulation during allergic inflammation
BACKGROUND:
IL-9 is important for the growth and survival of mast cells. IL-9 is produced by T cells, natural killer T cells, mast cells, eosinophils, and innate lymphoid cells, although the cells required for mast cell accumulation during allergic inflammation remain undefined.
OBJECTIVE:
We sought to elucidate the role of TH9 cells in promoting mast cell accumulation in models of allergic lung inflammation.
METHODS:
Adoptive transfer of ovalbumin-specific TH2 and TH9 cells was used to assess the ability of each subset to mediate mast cell accumulation in tissues. Mast cell accumulation was assessed in wild-type mice and mice with PU.1-deficient T cells subjected to acute and chronic models of allergic inflammation.
RESULTS:
Adoptive transfer experiments demonstrated that recipients of TH9 cells had significantly higher mast cell accumulation and expression of mast cell proteases compared with control or TH2 recipients. Mast cell accumulation was dependent on IL-9, but not IL-13, a cytokine required for many aspects of allergic inflammation. In models of acute and chronic allergic inflammation, decreased IL-9 levels in mice with PU.1-deficient T cells corresponded to diminished tissue mast cell numbers and expression of mast cell proteases. Mice with PU.1-deficient T cells have defects in IL-9 production from CD4(+) T cells, but not natural killer T cells or innate lymphoid cells, suggesting a TH cell-dependent phenotype. Rag1(-/-) mice subjected to a chronic model of allergic inflammation displayed reduced mast cell infiltration comparable with accumulation in mice with PU.1-deficient T cells, emphasizing the importance of IL-9 produced by T cells in mast cell recruitment.
CONCLUSION:
TH9 cells are a major source of IL-9 in models of allergic inflammation and play an important role in mast cell accumulation and activation
- …