1,009 research outputs found
Magnetic field generated resistivity maximum in graphite
In zero magnetic field, B, the electrical resistivity, rho(O,T) of highly oriented pyrolytic (polycrystalline) graphite drops smoothly with decreasing T, becoming constant below 4 K. However, in a fixed applied magnetic field B, the resistivity rho(B,T) goes through a maximum as a function of T, with larger maximum for larger B. The temperature of the maximum increases with B, but saturates to a constant value near 25 K (exact T depends on sample) at high B. In single crystal graphite a maximum in rho(B,T) as a function of T is also present, but has the effects of Landau level quantization superimposed. Several possible explanations for the rho(B,T) maximum are proposed, but a complete explanation awaits detailed calculations involving the energy band structure of graphite, and the particular scattering mechanisms involved
Nonlinear Structure of the Diffusing Gas-Metal Interface in a Thermonuclear Plasma
This Letter describes the theoretical structure of the plasma diffusion layer that develops from an initially sharp gas-metal interface. The layer dynamics under isothermal and isobaric conditions is considered so that only mass diffusion (mixing) processes can occur. The layer develops a distinctive structure with asymmetric and highly nonlinear features. On the gas side of the layer the diffusion coefficient goes nearly to zero, causing a sharp “front,” or well defined boundary between mix layer and clean gas with similarities to the Marshak thermal waves. Similarity solutions for the nonlinear profiles are found and verified with full ion kinetic code simulations. A criterion for plasma diffusion to significantly affect burn is given.United States. Dept. of Energy (Contract DE-AC52-06NA25396)United States. Dept. of Energy. Office of Science (Contract DE-AC52-07NA27344
Structural disjoining potential for grain boundary premelting and grain coalescence from molecular-dynamics simulations
We describe a molecular dynamics framework for the direct calculation of the
short-ranged structural forces underlying grain-boundary premelting and
grain-coalescence in solidification. The method is applied in a comparative
study of (i) a Sigma 9 120 degress twist and (ii) a Sigma 9 {411}
symmetric tilt boundary in a classical embedded-atom model of elemental Ni.
Although both boundaries feature highly disordered structures near the melting
point, the nature of the temperature dependence of the width of the disordered
regions in these boundaries is qualitatively different. The former boundary
displays behavior consistent with a logarithmically diverging premelted layer
thickness as the melting temperature is approached from below, while the latter
displays behavior featuring a finite grain-boundary width at the melting point.
It is demonstrated that both types of behavior can be quantitatively described
within a sharp-interface thermodynamic formalism involving a width-dependent
interfacial free energy, referred to as the disjoining potential. The
disjoining potential for boundary (i) is calculated to display a monotonic
exponential dependence on width, while that of boundary (ii) features a weak
attractive minimum. The results of this work are discussed in relation to
recent simulation and theoretical studies of the thermodynamic forces
underlying grain-boundary premelting.Comment: 24 pages, 8 figures, 1 tabl
imported berry mix cake suspected to be the source of infection in Norway
Ongoing hepatitis A outbreak in Europe 2013 to 2014
Abrupt grain boundary melting in ice
The effect of impurities on the grain boundary melting of ice is investigated
through an extension of Derjaguin-Landau-Verwey-Overbeek theory, in which we
include retarded potential effects in a calculation of the full frequency
dependent van der Waals and Coulombic interactions within a grain boundary. At
high dopant concentrations the classical solutal effect dominates the melting
behavior. However, depending on the amount of impurity and the surface charge
density, as temperature decreases, the attractive tail of the dispersion force
interaction begins to compete effectively with the repulsive screened Coulomb
interaction. This leads to a film-thickness/temperature curve that changes
depending on the relative strengths of these interactions and exhibits a
decrease in the film thickness with increasing impurity level. More striking is
the fact that at very large film thicknesses, the repulsive Coulomb interaction
can be effectively screened leading to an abrupt reduction to zero film
thickness.Comment: 8 pages, 1 figur
- …
