113 research outputs found

    How the mammalian endoplasmic reticulum handles aggregation-prone β-sheet proteins

    Get PDF

    Failure of RQC machinery causes protein aggregation and proteotoxic stress

    Get PDF
    Translation of messenger RNAs lacking a stop codon results in the addition of a carboxy-terminal poly-lysine tract to the nascent polypeptide, causing ribosome stalling. Non-stop proteins and other stalled nascent chains are recognized by the ribosome quality control (RQC) machinery and targeted for proteasomal degradation. Failure of this process leads to neurodegeneration by unknown mechanisms. Here we show that deletion of the E3 ubiquitin ligase Ltn1p in yeast, a key RQC component, causes stalled proteins to form detergent-resistant aggregates and inclusions. Aggregation is dependent on a C-terminal alanine/threonine tail that is added to stalled polypeptides by the RQC component, Rqc2p. Formation of inclusions additionally requires the poly-lysine tract present in non-stop proteins. The aggregates sequester multiple cytosolic chaperones and thereby interfere with general protein quality control pathways. These findings can explain the proteotoxicity of ribosome-stalled polypeptides and demonstrate the essential role of the RQC in maintaining proteostasis

    Wild-type huntingtin protects from apoptosis upstream of caspase-3

    Get PDF
    Expansion of a polyglutamine sequence in the N terminus of huntingtin is the gain-of-function event that causes Huntington's disease. This mutation affects primarily the medium-size spiny neurons of the striatum. Huntingtin is expressed in many neuronal and non-neuronal cell types, implying a more general function for the wild-type protein. Here we report that wild-type huntingtin acts by protecting CNS cells from a variety of apoptotic stimuli, including serum withdrawal, death receptors, and pro-apoptotic Bcl-2 homologs. This protection may take place at the level of caspase-9 activation. The full-length protein also modulates the toxicity of the poly-Q expansion. Cells expressing full-length mutant protein are susceptible to fewer death stimuli than cells expressing truncated mutant huntingtin

    Wild-type huntingtin protects from apoptosis upstream of caspase-3

    Get PDF
    Expansion of a polyglutamine sequence in the N terminus of huntingtin is the gain-of-function event that causes Huntington's disease. This mutation affects primarily the medium-size spiny neurons of the striatum. Huntingtin is expressed in many neuronal and non-neuronal cell types, implying a more general function for the wild-type protein. Here we report that wild-type huntingtin acts by protecting CNS cells from a variety of apoptotic stimuli, including serum withdrawal, death receptors, and pro-apoptotic Bcl-2 homologs. This protection may take place at the level of caspase-9 activation. The full-length protein also modulates the toxicity of the poly-Q expansion. Cells expressing full-length mutant protein are susceptible to fewer death stimuli than cells expressing truncated mutant huntingtin

    Genotranscriptomic meta-analysis of the Polycomb gene CBX2 in human cancers: initial evidence of an oncogenic role

    Get PDF
    Background: Polycomb group (PcG) proteins are histone modifiers known to transcriptionally silence key tumour suppressor genes in multiple human cancers. The chromobox proteins (CBX2, 4, 6, 7, and 8) are critical components of PcG-mediated repression. Four of them have been associated with tumour biology, but the role of CBX2 in cancer remains largely uncharacterised. Methods: Addressing this issue, we conducted a comprehensive and unbiased genotranscriptomic meta-analysis of CBX2 in human cancers using the COSMIC and Oncomine databases. Results: We discovered changes in gene expression that are suggestive of a widespread oncogenic role for CBX2. Our genetic analysis of 8013 tumours spanning 29 tissue types revealed no inactivating chromosomal aberrations and only 40 point mutations at the CBX2 locus. In contrast, the overall rate of CBX2 amplification averaged 10% in all combined neoplasms but exceeded 30% in ovarian, breast, and lung tumours. In addition, transcriptomic analyses revealed a strong tendency for increased CBX2 mRNA levels in many cancers compared with normal tissues, independently of CDKN2A/B silencing. Furthermore, CBX2 upregulation and amplification significantly correlated with metastatic progression and lower overall survival in many cancer types, particularly those of the breast. Conclusions: Overall, we report that the molecular profile of CBX2 is suggestive of an oncogenic role. As CBX2 has never been studied in human neoplasms, our results provide the rationale to further investigate the function of CBX2 in the context of cancer cells

    The endoplasmic reticulum: A hub of protein quality control in health and disease

    No full text
    One third of the eukaryotic proteome is synthesized at the endoplasmic reticulum (ER), whose unique properties provide a folding environment substantially different from the cytosol. A healthy, balanced proteome in the ER is maintained by a network of factors referred to as the ER quality control (ERQC) machinery. This network consists of various protein folding chaperones and modifying enzymes, and is regulated by stress response pathways that prevent the build-up as well as the secretion of potentially toxic and aggregation-prone misfolded protein species. Here, we describe the components of the ERQC machinery, investigate their response to different forms of stress, and discuss the consequences of ERQC break-down

    Endoplasmic reticulum stress and the unfolded protein response: targeting the achilles heel of multiple myeloma

    No full text
    Multiple myeloma is characterized by the malignant proliferating antibody-producing plasma cells in the bone marrow. Despite recent advances in therapy that improve the survival of patients, multiple myeloma remains incurable and therapy resistance is the major factor causing lethality. Clearly, more effective treatments are necessary. In recent years it has become apparent that, as highly secretory antibody-producing cells, multiple myeloma cells require an increased capacity to cope with unfolded proteins and are particularly sensitive to compounds targeting proteostasis such as proteasome inhibitors, which represent one of the most prominent new therapeutic strategies. Because of the increased requirement for dealing with secretory proteins within the endoplasmic reticulum, multiple myeloma cells are heavily reliant for survival on a set of signaling pathways, known as the unfolded protein response (UPR). Thus, directly targeting the UPR emerges as a new promising therapeutic strategy. Here, we provide an overview of the current understanding of the UPR signaling in cancer, and outline its important role in myeloma pathogenesis and treatment. We discuss new therapeutic approaches based on targeting the protein quality control machinery and particularly the IRE1 alpha/XBP1 axis of the UPR
    • …
    corecore